Location Entry Codes

As part of CIE's continual commitment to maintaining best practice in assessment, CIE has begun to use different variants of some question papers for our most popular assessments with extremely large and widespread candidature, The question papers are closely related and the relationships between them have been thoroughly established using our assessment expertise. All versions of the paper give assessment of equal standard.

www.mymainscloud.com

UNIVERSITY of CAMBRI.

International Examination

The content assessed by the examination papers and the type of questions are unchanged.

This change means that for this component there are now two variant Question Papers. Mark Schemes and Principal Examiner's Reports where previously there was only one. For any individual country, it is intended that only one variant is used. This document contains both variants which will give all Centres access to even more past examination material than is usually the case.

The diagram shows the relationship between the Question Papers, Mark Schemes and Principal Examiner's Reports.

Mark Scheme **Question Paper** Principal Examiner's Report Introduction Introduction Introduction **First variant Question Paper** First variant Mark Scheme First variant Principal Examiner's Report Second variant Question Paper Second variant Mark Scheme Second variant Principal Examiner's Report

Who can I contact for further information on these changes?

Please direct any questions about this to CIE's Customer Services team at: international@cie.org.uk

MARK SCHEME for the May/June 2008 question paper

0580, 0581 MATHEMATICS

www.nymathscloud.com

0580/11, 0581/11 Paper 12 (Core), maximum raw mark 56

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

First varia	ant Mark Scheme		mm. M
Pag	e 2 Mark Scheme	Syllabus	Papyna
	IGCSE – May/June 2008	0580, 0581	11 11
Abbrevia	ations		Cloud.con
aro	Answer rounding to		17
BOD	Benefit of the doubt is to be given to the candidate		
CAO	Correct answer only		
eeo	Each error or omission		
NR	Answer space is completely blank		
o.e.	or equivalent		
SC	Special Case		
WWW	Without wrong working		
ft or √	Work has been followed through after an error		

Dependent on the previous mark dep

Qu	Answer	Mark	Part Marks/Notes
1	13	1	
2	2 (h) 16 (min) cao	1	If not in the answer space units must be clear. E.g. Not 2:16 or 2.16.
3	196	1	
4	10	1	
5	$33(\%) < \frac{1}{3} < 0.35$	1	Accept the values in any form. $^{1}/_{3}$ must be to 3 or more s.f.
6	-14	1	
7	3.62×10^{-3} cao	1	
8	(a) 2	1	
	(b) 2	1	
9	(\$)1278	2	M1 284 ÷ 2 × 9 or 284 × $\frac{9}{2}$ or better.
10	$11.5 \le h < 12.5$	1 + 1	1 mark for each value in correct place.
11	(\$)1.40 or 140 cents	2	M1 2.45 \div (4 + 3) implied by 0.35. SC1 for answer 140. For answer in cents units must be stated.
12	(a) $\frac{13}{24}$ isw	1	Ignore further attempts at cancelling in (a) and (b). Allow equivalent fractions in (a) and (b).
	(b) $\frac{11}{20}$ isw	1	(Give mark in part (b)).
13	7.5 or 7½	2	M1 $\frac{1}{2} \times 8 \times h = 5 \times 6$ or better. Implied by $\frac{30}{4}$ or $\frac{15}{2}$ seen.

First variant Mark Scheme

-irst v	variant Mark Scheme				mm
	Page 3 IGC	Mark Scheme SE – May/June	2008	Syllabus 0580, 0581	Pap nyma 11
14	 (a) 35.81415(6) or 35.8188 35.796 (b) 36 (cm) (Ignore trailing zeros) 	3 or 1 1 ft	π from calculato respectively. 36 or follow thro answer to (a) is	or value or 3.142 or 3.1 ough from their (a) but greater than 1.	4 only if the
15	Vertices (3,1), (5,1), (2,4), (0,4) ruled parallelogram drawn.	4) and 2	M1 3 or 4 vertic If M0, SC1 Corr (3,5), (1,5), (4,2)	tes correctly plotted. rect reflection in $y = 3$.), (6,2).	
16	4.578 to 4.58	2	M1 $2.4^2 + 3.9^2$ o for M1. Implied by 20.9'	or better. Square root n 7 or 5.76 + 15.21 seen.	ot essential
17	(\$)1.14 or 114 cents	2	$\begin{array}{c} M1 \ 8 \times 0.68 - 2 \\ \text{or} \ 8 \times 68 - 2 \times 2 \\ \text{For answers in c} \end{array}$	× 2.15 215. cents units must be state	ed.
18	3x(2-3xy) final answer	2	SC1 $3(2x - 3x^2y)$ or $3x(2 + 3xy)$ as) or $x(6 - 9xy)$ s answers.	
19	(a) (i) -27 (ii) -48	1 1			
	(b) z	1	Allow z^1 .		
20	(a) $\sqrt{4}$ or 2	1			
	(b) $\sqrt{81}$ or 9	1			
	(c) $\sqrt{64}$ or 8	1			
	(d) $\sqrt{14}$ or 3.7(4)	1			
21	(a) 25	1			
	(b) 43	1			
	(c) $3n + 10$ oe final ans.	2	SC1 3n + k oe(k	$k \neq 10$) as answer.	
22	(a) 12	1			
	(b) (i) 0.83(3) or $\frac{10}{12}$ or $\frac{10}{12}$	isw 1			
	(ii) 49.8 to 50	1 ft	ft 60 × their (b)((i) correct to 3sf.	
	(c) 46	2	W1 for $(CD =)$ answer line or be	12 seen in working spa etween dotted lines at o	ace, or <i>C</i> and <i>D</i>

First variant Mark Scheme

Page 4	Mark Scheme	Syllabus	Pap
	IGCSE – May/June 2008	0580, 0581	11

First	variant Mark	Scheme				mun
	Page 4	Mark	Scheme		Syllabus	Papyna
		IGCSE – N	lay/June	2008	0580, 0581	11 77
23	(a) (\$)102	0	2	M1 for $\frac{4000 \times 3}{100}$	$\times \frac{8.5}{100}$ or SC1 for 5020	final ans.
	(b) (\$)103 Allow 1038.8	8.85 1039 or 1038.848 or 8 or 1038.9 or 1038.84	3	M2 for $4000 \times (1$ or M1 for $4000 \times$	$+\frac{8}{100}\Big)^3$ or better. $\left(1+\frac{8}{100}\right)^2$ or better.	
				Alt. M1 for (4000 M1 dep for '4665 (NB Interest only	$(+4000 \times 0.08) \times 0.0$.60 × 0.08. method)	8.
24	(a) (i) ($\begin{pmatrix} 0\\4 \end{pmatrix}$	2	1 mark for each co	omponent.	
	(ii) ($\begin{pmatrix} -4 \\ 4 \end{pmatrix}$	2	1 mark for each co	omponent.	
	(b) Line so	egment from P to $(-1, 6)$	2	W1 for (-1, 6) ind	licated or $\begin{pmatrix} -2\\ 4 \end{pmatrix}$ seen	anywhere.
				(k, 6) or a line thr	rough P and $(-1, 6)$.	(-1, K) or to

UNIVERSITY of CAMBRIDGE UNIVERSITY of CAMBRIDGE International Examinations

MARK SCHEME for the May/June 2008 question paper

0580, 0581 MATHEMATICS

www.nymathscloud.com

0580/12, 0581/12 Paper 12 (Core), maximum raw mark 56

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the May/June 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pag	e 2 Mark Scheme	Syllabus	Pap
	IGCSE – May/June 2008	0580, 0581	12 th So is
Abbrevia	tions		Cloud
			.6
aro	Answer rounding to		
BOD	Benefit of the doubt is to be given to the candidate		
CAO	Correct answer only		
eo	Each error or omission		
IR	Answer space is completely blank		
.e.	or equivalent		
SC	Special case		
ww	Without wrong working		
t or √	Work has been followed through after an error		
lep	Dependent on the previous mark		

Qu	Answer	Mark	Part Marks/Notes
1	9	1	
2	3 (h) 29 (min) cao	1	If not in the answer space units must be clear. E.g. Not 3:29 or 3.29.
3	196	1	
4	20	1	
5	$33(\%) < \frac{1}{3} < 0.35$	1	Accept the values in any form. $^{1}/_{3}$ must be to 3 or more s.f.
6	-9	1	
7	3.62×10^{-3} cao	1	
8	(a) 2	1	
	(b) 2	1	
9	(\$)1012	2	M1 276 ÷ 3 × 11 or 276 × $\frac{11}{3}$ or better.
10	$11.5 \le h \le 12.5$	1 + 1	1 mark for each value in correct place.
11	(\$)1.25 or 125 cents	2	M1 2.25 \div (5 + 4) implied by 0.25. SC1 for answer 125. For answer in cents units must be stated.
12	(a) $\frac{17}{29}$ isw	1	Ignore further attempts at cancelling in (a) and (b). Allow equivalent fractions in (a) and (b). SC1 Path correct but written as desirable or $%$ (Give
	(b) $\frac{13}{20}$ isw	1	mark in part (b)).
13	13.5 or 13 ¹ / ₂	2	M1 $\frac{1}{2} \times 8 \times h = 6 \times 9$ or better. Implied by $\frac{54}{4}$ or $\frac{27}{2}$ seen.

Second variant Mark Scheme

	Page 3	Mark Schem	e e 2008	Syllabus 0580 0581	Pap Ina
			6 2000	0000, 0001	12
14	 (a) 32.67256(3) or 32.6765 32.656 (b) 33 (Ignore trailing zeros) 	8 or 1 1 ft	π from calculat 33 or follow th answer to (a) is	tor value or 3.142 or 3.14 brough from their (a) but of s greater than 1.	respectively. only if the
15	Vertices (3,1), (5,1), (2,4), (0,4) ruled parallelogram drawn.	4) and 2	M1 3 or 4 vert SC1 Correct re (3,5), (1,5), (4,	ices correctly plotted. eflection in $y = 3$. ,2), (6,2).	
16	4.4598 to 4.4611	2	M1 $1.5^2 + 4.2^2$ M1. Implied by 19.	f or better. Square root no 89 or 2.25 + 17.64 seen.	t essential for
17	(\$)1.14 or 114 cents	2	M1 $8 \times 0.68 -$ or $8 \times 68 - 2 \times$ For answers in	2×2.15 \$\le 215. \$\text{ cents units must be stated}	1.
18	3x(2-3xy) final answer	2	SC1 $3(2x - 3x^2)$ or $3x(2 + 3xy)$	(y^2y) or $x(6-9xy)$ as answers.	
19	(a) (i) -64 (ii) -144	1 1			
	(b) z	1	Allow z^1 .		
20	(a) $\sqrt{4}$ or 2	1			
	(b) $\sqrt{81}$ or 9	1			
	(c) $\sqrt{64}$ or 8	1			
	(d) $\sqrt{14}$ or 3.7(4)	1			
21	(a) 25	1			
	(b) 43	1			
	(c) $3n + 10$ oe final ans.	2	SC1 $3n + k$ oe	$(k \neq 10)$ as answer.	
22	(a) 12	1			
	(b) (i) 0.83(3) or $\frac{10}{12}$ oe	isw 1			
	(ii) 49.8 to 50	1 ft	ft 60 × their (b	(i) correct to 3sf.	
	(c) 46	2	W1 for $(CD = $ line or between) 12 seen in working spac n dotted lines at C and D.	e, or answer

Second variant Mark Scheme

			· · · · ·
Page 4	Mark Scheme	Syllabus	Pap
	IGCSE – May/June 2008	0580, 0581	12

Page) 4	Mark	Schem	e	Syllabus	Papyn
		IGCSE – N	lay/June	e 2008	0580, 0581	12
				1		
23 (a)	1332		2	M1 for $\frac{6000 \times 3 \times 100}{100}$	7.4 or SC1 for 7332	inal ans.
(b)	1350.2 Allow 1350.2	6 1350 or 1350.258 or 5 or 1350 2 or 1350 3	3	M2 for $6000 \times (1 + 1)$	$\left(\frac{7}{100}\right)^3$ or better.	
	1550.2	5 01 1550.2 01 1550.5		or M1 for $6000 \times ($	$1 + \frac{7}{100}$ or better.	
				Alt. M1 for (6000 - M1 dep for '6869.4 (NB Interest only r	+ 6000 × 0.07) × 0.07 \$` × 0.07. nethod)	
4 (a)	(i) (⁽) 4	2	1 mark for each co	mponent.	
	(ii) (⁻	$\begin{pmatrix} -4\\4 \end{pmatrix}$	2	1 mark for each co	mponent.	
(b)	Line se	egment from P to $(-1, 6)$	2	W1 for (-1, 6) indi	cated or $\begin{pmatrix} -2\\ 4 \end{pmatrix}$ seen a	nywhere.
				If zero, SC1 for lin $(k, 6)$ or a line through the set of the se	e segment from P to (ugh P and $(-1, 6)$.	-1, k) or to

INIVERSITY of CAMBRIDGE UNIVERSITY of CAMBRIDGE International Examinations