CANDIDATE NAME

CENTER NUMBER


CANDIDATE NUMBER


CAMBRIDGE IGCSE MATHEMATICS (US)
0444/04
Paper 4 (Extended)
For examination from 2012

## SPECIMEN PAPER

2 hours 30 minutes
Candidates answer on the Question Paper.
Additional Materials: Geometrical Instruments
Electronic calculator

## READ THESE INSTRUCTIONS FIRST

Write your Center number, candidate number, and name on all the work you hand in.
Write in dark blue or black pen.
You may use a pencil for any diagrams, or graphs.
Do not use staples, paper clips, highlighters, glue, or correction fluid.
DO NOT WRITE IN ANY BARCODES.
Answer all questions.
If work is needed for any question it must be shown in the space provided.
Electronic calculators should be used.
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures.
Give answers in degrees to one decimal place.
For $\pi$, use either your calculator value or 3.142
The number of points is given in parentheses [ ] at the end of each question or part question.
The total of the points for this paper is 130 .

| For Examiner's Use |
| :---: |
|  |
|  |
|  |
|  |

## Formula List

For the equation $\quad a x^{2}+b x+c=0$

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Lateral surface area, $A$, of cylinder of radius $r$, height $h$.

$$
A=2 \pi r h
$$

Lateral surface area, $A$, of cone of radius $r$, sloping edge $l$.

$$
A=\pi r l
$$

Surface area, $A$, of sphere of radius $r$.

$$
A=4 \pi r^{2}
$$

Volume, $V$, of pyramid, base area $A$, height $h$.

$$
V=\frac{1}{3} A h
$$

Volume, $V$, of cone of radius $r$, height $h$.

$$
V=\frac{1}{3} \pi r^{2} h
$$

Volume, $V$, of sphere of radius $r$.

$$
V=\frac{4}{3} \pi r^{3}
$$



$$
\begin{aligned}
& \frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C} \\
& a^{2}=b^{2}+c^{2}-2 b c \cos A
\end{aligned}
$$

$$
\text { Area }=\frac{1}{2} b c \sin A
$$

1 Marlene, Carolina, and Pedro receive $\$ 800$ from their grandmother in the ratio Marlene : Carolina : Pedro $=7: 5: 4$.
(a) Calculate how much money each receives.

Answer (a) Marlene \$ $\qquad$
Carolina \$ $\qquad$
Pedro \$ $\qquad$ [3]
(b) Marlene spends $\frac{2}{7}$ of her money and then invests the rest for two years at $5 \%$ per year simple interest.

How much money does Marlene have at the end of the two years?

Answer (b) \$
(c) Carolina spends all of her money on a hi-fi set and two years later sells it at a loss of $20 \%$. How much money does Carolina have at the end of the two years?

Answer (c) \$
(d) Pedro spends some of his money and at the end of the two years he has $\$ 100$.

Write down and simplify the ratio of the amounts of money Maria, Carolina, and Pedro have at the end of the two years.


NOT TO
SCALE

To avoid an island, a ship travels 40 kilometers from $A$ to $B$ and then 60 kilometers from $B$ to $C$. The bearing of $B$ from $A$ is $080^{\circ}$ and angle $A B C$ is $115^{\circ}$.
(a) The ship leaves $A$ at 11:55.

It travels at an average speed of $35 \mathrm{~km} / \mathrm{h}$.
Calculate, to the nearest minute, the time it arrives at $C$.
(b) Find the bearing of
(i) $A$ from $B$,

Answer (b)(i)
[1]
(ii) $C$ from $B$.
(c) Calculate the straight line distance $A C$.

Answer (c)
km [4]
(d) Calculate angle $B A C$.
$\qquad$
Answer (d)
[3]
(e) Calculate how far $C$ is east of $A$.
$3 \mathrm{f}(x)=x^{2}-4 x+3$ and $\mathrm{g}(x)=2 x-1$.
(a) Solve $\mathrm{f}(x)=0$.
(b) Find $\mathrm{g}^{-1}(x)$.

Answer (b)
(c) Solve $\mathrm{f}(x)=\mathrm{g}(x)$, giving your answers correct to 2 decimal places.

Answer (c)
(d) Find the value of $g(f(-2))$.
Answer (d)
(e) Find $\mathrm{f}(\mathrm{g}(x))$. Simplify your answer.

4 (a) A solid metal sphere has a radius of 3.5 cm .
One cubic centimeter of the metal has a mass of 5.6 grams.
Calculate
(i) the surface area of the sphere,

$$
\text { Answer (a)(i) .............................. } \mathrm{cm}^{2} \text { [2] }
$$

(ii) the volume of the sphere,

$$
\text { Answer (a)(ii) ............................. } \mathrm{cm}^{3} \text { [2] }
$$

(iii) the mass of the sphere.
$\qquad$
(b)


Diagram 1


Diagram 2

Diagram 1 shows a cylinder with a diameter of 16 cm .
It contains water to a depth of 8 cm .
Two spheres identical to the sphere in part (a) are placed in the water. This is shown in Diagram 2.
Calculate $h$, the new depth of water in the cylinder.

$$
\mathrm{f}(x)=3 x-\frac{1}{x^{2}}+3, x \neq 0
$$

(a) The table shows some values of $\mathrm{f}(x)$.

| $x$ | -3 | -2.5 | -2 | -1.5 | -1 | -0.5 | -0.4 | -0.3 | 0.3 | 0.4 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{f}(x)$ | $p$ | -4.7 | -3.3 | -1.9 | -1 | -2.5 | -4.5 | -9.0 | -7.2 | -2.1 | 0.5 | $q$ | 7.1 | 8.8 | 10.3 | $r$ |

Find the values of $p, q$, and $r$.

$$
\begin{equation*}
\text { Answer }(a) p= \tag{3}
\end{equation*}
$$

$\qquad$ $q=$ $\qquad$ $r=$
(b) Draw the graph of $y=\mathrm{f}(x)$ for $-3 \leqslant x \leqslant-0.3$ and $0.3 \leqslant x \leqslant 3$.

(c) Use your graph to solve the equations
(i) $3 x-\frac{1}{x^{2}}+3=0$,

## Answer (c)(i)

(ii) $3 x-\frac{1}{x^{2}}+7=0$.

Answer (c)(ii)
(d) $\mathrm{g}(x)=3 x+3$.

On the grid on the previous page, draw the graph of $y=\mathrm{g}(x)$ for $-3 \leqslant x \leqslant 3$.
(e) (i) Describe briefly what happens to the graphs of $y=\mathrm{f}(x)$ and $y=\mathrm{g}(x)$ for large positive or negative values of $x$.

Answer (e)(i) $\qquad$
$\qquad$
(ii) Estimate the slope of $y=\mathrm{f}(x)$ when $x=100$.

6 Hank invests \$100 at 4\% per year compound interest.
(a) How many dollars will Hank have after 2 years?
(b) After $x$ years, Hank will have $y$ dollars.

He knows a formula to calculate $y$.
The formula is $y=100 \times 1.04^{x}$

| $x$ (Years) | 0 | 10 | 20 | 30 | 40 |
| :--- | :---: | :---: | :---: | :---: | :---: |
| $y$ (Dollars) | 100 | $p$ | 219 | $q$ | 480 |

Use this formula to calculate the values of $p$ and $q$ in the table.

$$
\begin{equation*}
\text { Answer (b) } p= \tag{2}
\end{equation*}
$$

$\qquad$ $q=$
(c) Plot the five points in the table on the grid below and draw a smooth curve through them.

(d) Use your graph to estimate
(i) how many dollars Hank will have after 25 years,

$$
\operatorname{Answer}(d)(\mathrm{i}) \$
$$

$\qquad$
(ii) how many years, to the nearest year, it takes for Hank to have \$200.

Answer (d)(ii)
(e) Avril invests \$100 at 7\% per year simple interest.
(i) Show that after 20 years Avril has $\$ 240$.

Answer (e)(i)
(ii) How many dollars will Avril have after 40 years?

Answer (e)(ii) \$
(iii) On the grid on the previous page, draw a graph to show how the $\$ 100$ which Avril invests will increase during the 40 years.
(f) Avril and Hank start with the same amount.

Use your graphs to find after how many years Hank will start to have more than Avril.

7200 people record the number of hours they work in a week.
The cumulative frequency graph below shows this information.
Th er
(a) Use the graph to find
(i) the median,

Answer (a)(i) $\qquad$
(ii) the upper quartile,

Answer (a)(ii)
h [1]
(iii) the inter-quartile range,

Answer (a)(iii)
h [1]
(iv) the number of people who work more than 60 hours in a week.

Answer (a)(iv)
(b) Vernon uses the graph to make the following frequency table.

| Hours worked (h) | $0<h \leqslant 10$ | $10<h \leqslant 20$ | $20<h \leqslant 30$ | $30<h \leqslant 40$ | $40<h \leqslant 50$ | $50<h \leqslant 60$ | $60<h \leqslant 70$ | $70<h \leqslant 80$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 12 | 34 | 36 | 30 | 38 | 30 |  |  |

(i) Use the graph to complete the table.
(ii) Calculate an estimate of the mean number of hours worked in a week.
(c) Maria uses the graph to make a different frequency table.

| Hours worked $(h)$ | $0<h \leqslant 30$ | $30<h \leqslant 40$ | $40<h \leqslant 50$ | $50<h \leqslant 80$ |
| :--- | :---: | :---: | :---: | :---: |
| Frequency | 82 | 30 | 38 | 50 |

When she draws a histogram, the height of the column for the interval $30<h \leqslant 40$ is 9 cm . Calculate the height of each of the other three columns.

8 (a)

$A B C D E$ is a pentagon.
A circle, center $O$, passes through the points $A, C, D$, and $E$.
Angle $E A C=36^{\circ}$, angle $C A B=78^{\circ}$, and $A B$ is parallel to $D C$.
(i) Find the values of $x, y$, and $z$, giving a reason for each.
$x=$ $\qquad$

Reason $\qquad$
$y=$ $\qquad$
Reason $\qquad$
$z=$ $\qquad$

Reason
(ii) Explain why $E D$ is not parallel to $A C$.

Answer (a)(ii) $\qquad$
(iii) Find the value of angle $E O C$.
(b)


## NOT TO

SCALE
$P, Q, R$ and $S$ lie on a circle.
$P Q=7 \mathrm{~cm}$ and $S R=10 \mathrm{~cm}$.
$P R$ and $Q S$ intersect at $X$.
The area of triangle $S R X=20 \mathrm{~cm}^{2}$.
(i) Write down the geometrical word which completes the following statement.

Triangle $P Q X$ is $\qquad$ to triangle $S R X$.
(ii) Calculate the area of triangle $P Q X$.

Answer (b)(ii) $\qquad$
(iii) Calculate the length of the perpendicular height from $X$ to $R S$.


Diagram 1


Diagram 2


Diagram 3

The first three diagrams in a sequence are shown above.
The diagrams are made up of dots and lines. Each line is one centimeter long.
(a) Make a sketch of the next diagram in the sequence.

Answer (a)
(b) The table below shows some information about the diagrams.

| Diagram | 1 | 2 | 3 | 4 | $\cdots$ | $n$ |
| :---: | ---: | ---: | ---: | ---: | :--- | :--- |
| Area | 1 | 4 | 9 | 16 | $\cdots$ | $x$ |
| Number of dots | 4 | 9 | 16 | $p$ | $\cdots$ | $y$ |
| Number of one centimeter lines | 4 | 12 | 24 | $q$ | $\cdots$ | $z$ |

(i) Write down the values of $p$ and $q$.

$$
\begin{equation*}
\text { Answer }(b)(\mathrm{i}) p= \tag{2}
\end{equation*}
$$

$\qquad$ $q=$
(ii) Write down each of $x, y$, and $z$ in terms of $n$.

$$
\begin{aligned}
& \text { Answer (b)(ii) } x= \\
& y= \\
& z=
\end{aligned}
$$

(c) The total number of one centimeter lines in the first $n$ diagrams is given by the exp

$$
\frac{2}{3} n^{3}+f n^{2}+g n
$$

(i) Use $n=1$ in this expression to show that $f+g=\frac{10}{3}$. Answer (c)(i)
(ii) Use $n=2$ in this expression to show that $4 f+2 g=\frac{32}{3}$. Answer (c)(ii)
(iii) Find the values of $f$ and $g$.

Answer (c)(iii) $f=$ $\qquad$

$$
\begin{equation*}
g= \tag{3}
\end{equation*}
$$

(iv) Find the total number of one centimeter lines in the first 10 diagrams.

10 Give your answers to this question as fractions.
The probability that it rains today is $\frac{2}{3}$.
If it rains today, the probability that it will rain tomorrow is $\frac{3}{4}$.
If it does not rain today, the probability that it will rain tomorrow is $\frac{1}{6}$.
The tree diagram below shows this information.

(a) Write down, as fractions, the values of $s, t$ and $u$.

$$
\begin{equation*}
\operatorname{Answer}(a) s=\quad, t=\quad, u= \tag{3}
\end{equation*}
$$

(b) Calculate the probability that it rains on both days.

Answer (b)
(c) Calculate the probability that it will not rain tomorrow.

