UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

MAXIMUM SCORE: 130

This document consists of 8 printed pages.

Types of score

\mathbf{M} scores are given for a correct method.
A scores are given for an accurate answer following a correct method.
B scores are given for a correct statement or step.
D scores are given for a clear and appropriately accurate drawing.
\mathbf{P} scores are given for accurate plotting of points.
\mathbf{E} scores are given for correctly explaining or establishing a given result.
SC scores are given for special cases that are worthy of some credit.

Abbreviations

art anything rounding to
cao correct answer only
cso correct solution only
ft follow through
isw ignore subsequent working
oe or equivalent
soi seen or implied
ww without working
www without wrong working

1 (a)	350, 250, 200	B3	M1 for $800 \div(7+5+4)$ Implied by 50 and M1 dep their $50 \times$ any one of 7,5 , or 4
(b)	275 cao	B3	B1 for 100 or 250 (may be implied in next step) and M1 for $\frac{\text { their } 250 \times 5 \times 2}{200}$ seen
(c)	200	B2 ft	ft $0.8 \times$ their 250 from (a) oe correctly evaluated M1 for $0.8 \times$ their 250 from (a)
(d)	11:8:4 or $2.75: 2: 1$ cao	B2	M1 for 275 or their (b) : 200 or their (c) : 100 [10]

2 (a)	1446 or 246 pm cao	B3	M1 for $\frac{60+40}{35}$ (2.857...) could be in pa and M1 for correct method to convert a decimal time to minutes ft a decimal either full answer or decimal part $\times 60$ (e.g., $51 .(428), 171 .(4 \ldots$...) or 2 hrs 51 or 51 m)
(b) (i)	260	B1	
(ii)	145	B1 ft	ft their (b)(i) - 115
(c)	85(.0) cao www	B4	M2 for $\left(A C^{2}=\right) 40^{2}+60^{2}-2 \times 40 \times 60 \times \cos 115$ or M1 for correct implicit version and M1 dep $(A C=) \sqrt{ }$ of a correct combination
(d)	39.76 to 39.8 cao www	B3	$\begin{aligned} & \text { M2 for }(\sin A=) \frac{\sin 115}{\text { their }(\mathbf{c})} \times 60 \\ & \text { or M1 for } \frac{\sin A}{60}=\frac{\sin 115}{\text { their }(\mathbf{c})} \end{aligned}$ Could use cosine rule as alt method
(e)	73.76-73.81 cao	B3	$\begin{aligned} & \text { M2 for } 40 \sin 80+60 \sin 35 \text { oe } \\ & (39.4) \quad(34.4) \\ & \text { or their }(\mathbf{c}) \times \sin (100-\text { their }(\mathbf{d})) \\ & \text { or their }(\mathbf{c}) \times \cos (\text { their }(\mathbf{d})-10) \\ & \text { or } \mathbf{M 1} \text { for either } 40 \sin 80 \text { or } 60 \sin 35 \\ & \text { or implicit trig version using their }(\mathbf{c}) \end{aligned}$

3 (a)	$(x-3)(x-1)[=0]$	M1	$\frac{4 \pm \sqrt{(-4)^{2}-4.1 .3}}{2}$ or $(x-2)^{2}=1$ or be
	1 and 3 www B2	A1	
(b)	Correct first step of rearrangement $\frac{x+1}{2}$ oe	M1	e.g., $y+1=2 x$ or $x+1=2 y$ or better
(c)	$x^{2}-6 x+4=0$	M1	Can be implied by later work (method marks)
	$\frac{p \pm \sqrt{q}}{r}$ with $p=6$ and $r=2$	B1 ft	ft if in the form $a x^{2}+b x+c(=0)$ with $a \neq 0$
	and $q=(-6)^{2}-4.1 .4$ oe or 20	B1 ft	$\left[(x-3)^{2}-5=0 \mathbf{B} 1 \text { then } x=(\pm) \sqrt{5}+3 \mathbf{B} 1\right.$ is the equivalent for completing the square]
	5.24 cao	B1	
	0.76 cao www	B1	SC1 for both answers "correct" but not to 2 dp (5.236 $067977,0.763932022$) Can be truncated or correctly rounded
(d)	29	B2	SC1 for [$\mathrm{f}(-2)=] 15$ seen or $2 x^{2}-8 x+5$ oe seen
(e)	$(2 x-1)^{2}-4(2 x-1)+3$	M1	
	$4 x^{2}-12 x+8$ final answer	A2	Or correctly factorized After A0, SC1 for $4 x^{2}-12 x+8$ seen
			[14]
4 (a) (i)	153.86 to 153.96 or 154	B2	M1 for $4 \pi 3.5^{2}$
(ii)	179.5 to 179.62 or 180	B2	M1 for $\frac{4}{3} \pi 3.5^{3}$
(iii)	1005 to 1006 or 1008 or 1010 (g)	B2 ft	ft their (ii) $\times 5.6$ correct to 3 sf or better (allow in kg) M1 for their (ii) $\times 5.6$
(b)	9.78 to 9.79	B4	M1 for $\pi 8^{2} \times 8$ (1608-1609) Alt $\pi 8^{2} d=2 \times$ their (ii) M1
			and M1 dep for $\pi 8^{2} h=2 \times$ their (ii) $+\pi 8^{2} \times 8$ Alt ($2 \times$ their $(\mathbf{a})($ iii) $) \div\left(\pi 8^{2}\right)$ M1 dep and M1 dep $\left(2 \times\right.$ their $\left.(\mathbf{i i})+\pi 8^{2} \times 8\right) \div\left(\pi 8^{2}\right)$ Alt add 8 M1 dep
			[10]

5 (a) (b)	$-6.1(11 \ldots), 5,11.9$ (11.88)	B1 B1 B1	
	16 correct points	P3	$\mathbf{P 2} \mathbf{f t}$ for 13 to 15 correct (in correct square) P1 ft for 10 to 12 correct
	Smooth curves through 14 points Ignoring $x= \pm 0.3$	D1	Correct shape, not ruled, within $\frac{1}{2}$ small square (curves could be joined)
	Graph does not cross the y-axis	B1	Indep but needs 2 "curves"
(c) (i)	$0.45 \leqslant x \leqslant 0.5$	B1	
(ii)	$-2.4 \leqslant x \leqslant-2.1$	B1	
	$-0.5 \leqslant x \leqslant-0.4$	B1	
	$0.3 \leqslant x \leqslant 0.4$	B1	If 0 scored, $\mathbf{S C 1}$ for evidence of $\mathrm{f}(x)=-4$
(d)	$\mathrm{g}(x)=3 x+3$ correct, ruled, full range (1mm accuracy at ends)	B2	Allow SC1 for any one of correct but short, slope of $3, y$-intercept 3 on sloping line, "good" freehand
(e) (i)	Gets closer	B1	Any correct comment isw dep on $\mathrm{g}(x)$ correct or freehand
(ii)	Answer rounds to 3.00	B1	
			[16]
6 (a)	108(.16) (allow 108.2(0)) www	B2	M1 for 100×1.04^{2} oe
	148(.02...), 324(.3...)	B1 B1	
	$\begin{aligned} & 5 \text { correct pts 100, } 148 \mathrm{ft}, 219 \text {, } \\ & 324 \mathrm{ft}, 480 \end{aligned}$	P3	$\mathbf{P 2} \mathbf{f t}$ for 4 correct, $\mathbf{P 1} \mathbf{f t}$ for 3 correct Points must be in correct square vertically, including on line
	Smooth exponential curve, correct shape, through 5 points	D1	
(d) (i)	265-270	B1	If out of range, then ft their graph at 25 years
(ii)	17 or 18 cao	B1	
(e) (i)	$\frac{(100) \times 7 \times 20}{(100)} \text { oe }$	M1	
	$100+7 \times 20$ or better	E1	No errors
(ii)	380	B1	
(iii)	Correct straight ruled line for x-range 0 to 35	D2	P1 ft for 2 of $(0,100),(20,240),(40,380) \mathrm{ft}$ correctly plotted
(f)	$27-29$ cao	B1	
			[16]

8 (a) (i)	$\begin{array}{\|l\|} \hline x=78 \\ \text { alternate angles } \end{array}$	$\begin{aligned} & \hline \text { B1 } \\ & \text { E1 } \end{aligned}$	Dep on B1 Accept Z angle, extras can sp Accept longer reasons using correct language and clarity with angles used, e.g., allied angles gives 102° and angles on a straight line $=180^{\circ}$
	either $y=144$ or $z=102$	B1	
	(opposite angles of) cyclic quad $(=180)$	E1	Dep on B1, extras can spoil
	and $z=102$ or $y=144$	B1	
	$\begin{aligned} & \text { angles (in (a)) quadrilateral } \\ & (=360) \\ & \text { or (opp angles of) cyclic quad } \\ & (=180) \end{aligned}$	E1	Dep on B1, extras can spoil
(ii)	Their $z+36 \neq 180$ oe	E1	Could also use their angles x and y provided $x+y \neq 180$ Could be a longer reason involving angles, must be clearly explained.
(iii)	72 or 288	B1	
(b) (i)	Similar (or enlargement)	B1	
(ii)	9.8 (9.79 to 9.81) www	B2	M1 for $\left(\frac{7}{10}\right)^{2}$ or $\left(\frac{10}{7}\right)^{2}$ oe seen (0.49), (2.04) It is possible to do (iii) then (ii) and full marks can still be scored
(iii)	4 www	B2	M1 for $\frac{1}{2} \times 10 \times$ height $=20$

9 (a) (b) (i) (ii)	Sketch of 4 by 4 diagram $\begin{aligned} & 25,40 \\ & n^{2} \\ & (n+1)^{2} \text { oe } \\ & (n+1)^{2}+n^{2}-1 \text { or } 2 n^{2}+2 n \text { or } \\ & 2 n(n+1) \text { oe } \end{aligned}$	$\begin{gathered} \text { B1 } \\ \text { B1 B1 } \\ \text { B1 } \\ \text { B1 } \\ \text { B2 } \end{gathered}$	Any one of these oe isw and if B0 allow SC1 for their $(n+1)^{2}+$ their $\left(n^{2}\right)-1$ or an expression containing $2 n^{2}$ as the highest order term, soi
(c) (i)	$\frac{2}{3}+f+g=4$	B1	
(ii)	$\begin{aligned} & \frac{2}{3} \times 2^{3}+f \times 2^{2}+g \times 2 \mathrm{oe} \\ & 4 f+2 g=\frac{32}{3} \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { E1 } \end{gathered}$	ie for substituting 2 No errors
(iii)	$2 f+2 g=\frac{20}{3}, 4 f+2 g=\frac{32}{3}$	M1	for correctly setting up for elimination of one variable
	$(f=) 2,(g=) \frac{4}{3}$ oe cao www B3	A1 A1	Accept $\frac{6}{3}$ for 2
(iv)	880 cao	B1	[14]
10 (a)	$s=\frac{1}{3}, t=\frac{1}{4}, u=\frac{5}{6}$	B1 B1 B1	All correctly placed on tree or clearly indicated
(b)	$\frac{2}{3} \times \frac{3}{4}$	M1	Accept all probabilities as frac/dec/\% - $\mathbf{1}$ once for words or 2 sf, do not accept ratios isw cancelling after correct answer
	$\frac{1}{2}$ oe cao	A1	
(c)	$\begin{aligned} & \frac{2}{3} \times \text { their } \frac{1}{4}+\text { their } \frac{1}{3} \times \text { their } \frac{5}{6} \\ & \frac{4}{9} \text { oe cao }(0.444 \ldots) \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	Follow through method provided $0<P<1$
			[7]

