

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CAMBRIDGE IGCSE MATHEMATICS (US)

Paper 2 (Extended) SPECIMEN SCORING GUIDE 0444/02 For examination from 2012

MAXIMUM SCORE: 70

This document consists of 4 printed pages.

Types of score

M scores are given for a correct method.

A scores are given for an accurate answer following a correct method.

B scores are given for a correct statement or step.

D scores are given for a clear and appropriately accurate drawing.

P scores are given for accurate plotting of points.

E scores are given for correctly explaining or establishing a given result.

SC scores are given for special cases that are worthy of some credit.

Abbreviations

- cao correct answer only
- cso correct solution only
- ft follow through
- isw ignore subsequent working
- oe or equivalent

soi seen or implied

ww without working

www without wrong working

			r	
1	(a)	any non-square $\sqrt{10}$ or π or e	B1	$\sqrt{5}$ but not $\sqrt{9}$, $\sqrt{2}/3$ is OK, sin 20 etc
				but not sin 30
				No fractions, decimals, or negatives
	(b)	61 or 67	B1	allow 61 and 67 but no other pairs
				[2]
2		20	B2	M1 for 2.5 ± 0.125 or
-		20		[2]
2	(a)	25.500	D1	[-]
3	(a)	33 300	D1	
	(b)	6.0×10^{-3}	D1	
	(0)	0.9 × 10	DI	
	(a)	1.6×10^{15}	DJ	P1 for 16×10^{14} or $16000000000000000000000000000000000000$
	(0)	1.0 × 10	D2	
				[*]
4	(a) (i)	1	B1	
	(••)		D1	
	(11)	6 (or -6)	BI	
		7	D1	
	(D)	/	BI	[2]
		12		[3]
5	(a)	$\frac{12}{18}$ oe	B1	Accept equivalent fractions, decimals, % but
				not ratio. isw cancelling/conversion
		2		
	(b)	$\frac{3}{12}$	B2	B1 for any fraction over 12
				[3]
6	(a)	570	B1	
	(b)	Neptune	B1	
		_		[2]

		3	Mun ny ny ny
7 (a)	$4x^2 - 7x - 7x + 49$ or better	B2	B1 for any 3 of these terms seen in work
(b)	3y(x+2y)(x-2y)	B2	B1 for $3y(x^2 - 4y^2)$ or $(x - 2y)(3xy + 6y^2)$ or $(x + 2y)(3xy - 6y^2)$ or better seen [4]
8 (a)	36	B2	$\mathbf{M1} \text{ for } 2 \times 2 \times 3 \times 3 \text{ oe}$
(b)	126	B2	M1 for $2 \times 3 \times 3 \times 7$ oe [4]
9 (a)	<i>x</i> < 3.5 oe	B2	M1 for 3.5 oe seen or $4x < 14$ seen
(b)	ft their inequality from (a)	B1 ft	[3]
10 (a)	Plots (65, 20), (80, 15) and (60, 25) correctly	P2	P1 for 2 plots correct
(b)	Negative	B1	
(c)	ft their reading at 50 hot drinks from a ruled line of best fit	B2 ft	B1 for attempt to read at 50 without line of best fit
11 (a)	Detetion (only)	D1	[5]
11 (a)	90° counterclockwise oe	B1 B1	
	about the origin $(0, 0)$ oe	B1	
(b)		Ρ2	If P0 , P1 for stretch <i>y</i> -axis invariant line scale factor $k > 0$ ($k \ne 1$), or for stretch <i>x</i> -axis invariant line scale factor 2, or for any horizontal translation of the correct solution
12	a = 4, b = 2	B1 B1	
	(12)		[2]
13 (a)	$\begin{pmatrix} 12\\1 \end{pmatrix}$	B2	B1 for either correct
(b)	$\sqrt{20}$ oe	B2	If B0 award M1 for $(\pm 4)^2 + 2^2$ or better seen [4]

4	n. 12
	In Tark
	Att S
14 (a) $y = -2x + 4$ oe B2 After B0 , B1 for $y = mx + 4$ (m) or for $y = -2x + c$	
(b) slope of perp = $\frac{1}{2}$ B1	Y. CO
$\begin{array}{c} \text{(a)} \\ \text{midpoint} = (1, 2) \end{array} \qquad $	
$2 = \frac{1}{2} \times 1 + c$ M1 For substituting correctly into the a line formula. M1 can imply B	ne equation of 1 B1 if correct
$y = \frac{1}{2}x + \frac{3}{2}$ or any correct equivalent A1	[6]
15 (a) (i) Sketches $x + y = 5$ B1 Line with negative slope with in positive x and y	ntercepts in
(ii) Sketches $y = 1$ B1 Horizontal line with $y = 1$ indic	ated
(iii) Sketches $y = 2x$ B1 Positive slope passing through (D C
(b) Writes <i>R</i> in correct region B1	[4]
	[4]
16 (a) $\sqrt{3}$ B1 not $\frac{\sqrt{3}}{1}$	
(b) $14\sqrt{3}$ B2 B1 for $10\sqrt{3}$ or $4\sqrt{3}$ seen	
(c) $8 + 2\sqrt{15}$ or $2(4 + \sqrt{15})$ B2 M1 for $5 + \sqrt{15} + \sqrt{15} + 3$	
or $\sqrt{25} + \sqrt{15} + \sqrt{15} + \sqrt{9}$	[5]
17 (a) $c = 19, d = 3$ B3 B1 for $d = 3$	[5]
or M1 for $(x + 3)^2 - 9 + c = (x - 3)^2 - $	$(+d)^2 + 10$
(b) 10 B1	
18 (a) $wf = 300000$ oe B2 M1 $wf = k$ and A1 $k = 300000$	[4]
(b) 500 R1	
	[3]
19 (a) 24π www B2 Condone $24 \times \pi$	
M1 for $\frac{\pi \times 9 \times 8}{3}$ or $\frac{\pi \times 3^2 \times 8}{3}$	
cm ³ B1 Independent units mark	
(b) 436 B2 M1 for 4 or 2^2 seen as scale fac	tor [5]