

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

	CANDIDATE NAME			
	CENTER NUMBER			CANDIDATE NUMBER
* 0 0	MATHEMATICS	6 (US)		0444/43
σ	Paper 4 (Extend	led)		October/November 2017
0				2 hours 30 minutes
0	Candidates answ	wer on t	he Question Paper.	
	Additional Mater	rials:	Geometrical instru Electronic calculate	

READ THESE INSTRUCTIONS FIRST

Write your Center number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

If work is needed for any question it must be shown in the space provided.

Electronic calculators should be used.

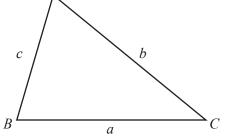
If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant digits.

Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142.

The number of points is given in parentheses [] at the end of each question or part question. The total of the points for this paper is 130.

Write your calculator model in the box below.


This document consists of 16 printed pages.

www.mymathscloud.com

Formula List

For the equation	$ax^2 + bx + c = 0$	$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
Lateral surface area, A, of c	ylinder of radius <i>r</i> , height <i>h</i> .	$A=2\pi rh$
Lateral surface area, A , of c	one of radius r, sloping edge l.	$A = \pi r l$
Surface area, A, of sphere o	f radius <i>r</i> .	$A = 4\pi r^2$
Volume, <i>V</i> , of pyramid, bas	e area A , height h .	$V = \frac{1}{3}Ah$
Volume, <i>V</i> , of cone of radiu	s r , height h .	$V = \frac{1}{3}\pi r^2 h$
Volume, <i>V</i> , of sphere of rad	ius r.	$V = \frac{4}{3}\pi r^3$
\bigwedge^{A}		$\frac{a}{\sin A} = \frac{b}{\sin B}$

 $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$ $a^2 = b^2 + c^2 - 2bc \cos A$ $\operatorname{Area} = \frac{1}{2}bc \sin A$

- 1 (a) The angles of a triangle are in the ratio 2 : 3 : 5.
 - (i) Show that the triangle is right-angled.
 - (ii) The length of the hypotenuse of the triangle is 12 cm.

Use trigonometry to calculate the length of the shortest side of this triangle.

(b) The sides of a different right-angled triangle are in the ratio 3 : 4 : 5.

(i) The length of the shortest side is 7.8 cm.Calculate the length of the longest side.

..... cm [2]

..... cm [3]

www.mymathscloud.com

[1]

(ii) Calculate the smallest angle in this triangle.

.....[3]

2 (a) Solve. $\frac{x}{7} = 49$	4 WWW.INJINSCIOURI.com
(b) Simplify. (i) x ⁰	<i>x</i> =[1]
(ii) $x^7 \times x^3$	[1]
(iii) $\frac{(3x^6)^2}{x^{-4}}$	[1]
(c) (i) Factor.	[2] $2x^2 - 18$

[2	2	1		1]									r))		2									2	2	2						2	2																						-									l	l											•			•		•							•		•		•			•			•		•		•	•		•			•		•		•		•		•	•					•			•			•			•			•		•			•			
----	---	---	--	---	---	--	--	--	--	--	--	--	--	---	--	---	---	--	---	--	--	--	--	--	--	--	--	---	---	---	--	--	--	--	--	---	---	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	--	---	--	--	--	--	--	--	--	--	---	---	--	--	--	--	--	--	--	--	--	--	---	--	--	---	--	---	--	--	--	--	--	--	---	--	---	--	---	--	--	---	--	--	---	--	---	--	---	---	--	---	--	--	---	--	---	--	---	--	---	--	---	---	--	--	--	--	---	--	--	---	--	--	---	--	--	---	--	--	---	--	---	--	--	---	--	--	--

(ii) Simplify.
$$\frac{2x^2 - 18}{x^2 + 7x - 30}$$

.....[3]

		5
3	(a)	5 In a sale, the price of a laptop is reduced by 5%. The sale price is \$456. Calculate the original price.
		Calculate the original price.
		\$[3]
	(b)	Kate invests \$200 at a rate of 1.5% per year compound interest.
		Calculate the amount Kate has after 18 years.
		\$[2]
	(c)	Larry buys a watch for \$2000. The value of the watch increases exponentially by $x\%$ per year. After 17 years the value of the watch is \$2449.62.
		Calculate the value of <i>x</i> .
		x =
	(d)	Maggie buys a car for $c.$ She sells it at a loss of $p\%$
		Find an expression, in terms of c and p , for the selling price of the car.

\$[2]

© UCLES 2017

The table shows information about the time, t minutes, taken for each of 150 girls to complete an essay. 4

4 The table shows in	nformation about t	6 the time, <i>t</i> minutes	s, taken for each c	of 150 girls to con	the second seco	Spholosur www.
Time (<i>t</i> minutes)	$60 < t \le 65$	$65 < t \le 70$	$70 < t \le 80$	$80 < t \le 100$	$100 < t \le 150$	-OM
Frequency	10	26	34	58	22	

(a) Write down the interval that contains the median time.

 $\ldots < t \leq \ldots$ [1]

(b) Calculate an estimate of the mean time.

.....min [4]

(c) Rafay looks at the frequency table.

(i) He says that it is not possible to work out the range of the times.

Explain why he is correct.

.....[1]

He draws a pie chart to show this information. (ii)

Calculate the sector angle for the interval $65 < t \le 70$ minutes.

.....[2]

(d) A girl is chosen at random.

Work out the probability that she took more than 100 minutes to complete the essay.

.....[1]

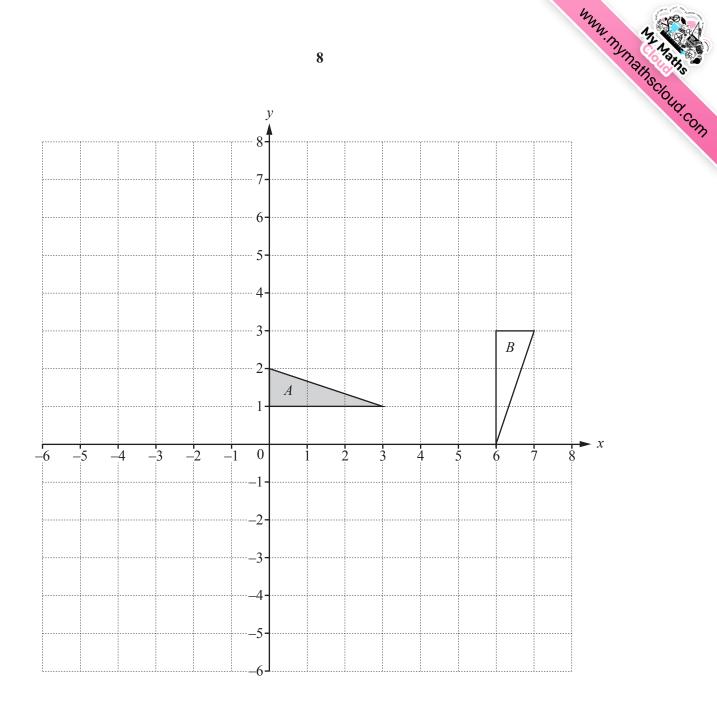
(e) Two girls are chosen at random.

Work out the probability that, to complete the essay,

(i) they both took 65 minutes or less,

.....[2]

(ii) one took 65 minutes or less and the other took more than 100 minutes.


.....[3]

(f) The information in the frequency table is shown in a histogram. The height of the block for the $60 < t \le 65$ interval is 5 cm.

Complete the table.

Time (<i>t</i> minutes)	$60 < t \le 65$	$65 < t \le 70$	$70 < t \le 80$	$80 < t \le 100$	$100 < t \le 150$
Height of block (cm)	5				

www.mymathscloud.com

(a) Draw the image of

5

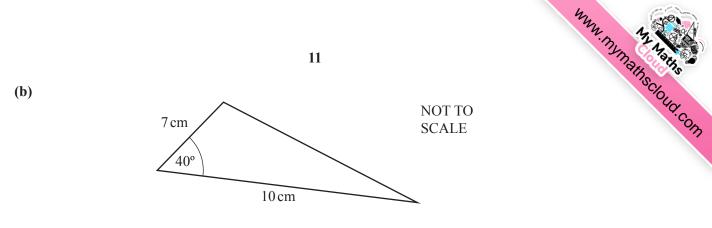
(i)	triangle A after a reflection in the line $x = 0$,	[2]
(ii)	triangle A after an enlargement, scale factor 2, center (0, 4),	[2]
(iii)	triangle A after a translation by the vector $\begin{pmatrix} -5\\ 3 \end{pmatrix}$.	[2]
(b) Des	scribe fully the single transformation that maps triangle <i>A</i> onto triangle <i>B</i> .	
		[3]

			9		MMM. My Mathscioud.com
6		$\mathbf{f}(x) = 2x - 1$	g(x) = 3 - x	$\mathbf{h}(x) = 2^x$	sthsclour
	(a)	Find f(-3).			Y.COM
	(b)	Find $f(g(x))$ in its simplest fo	rm.		
					[2]
	(c)	Find <i>x</i> when			ل کا
		(i) $f(x) = g(x)$,			
				<i>x</i> =	[2]
		(ii) $h(x) = 0.125$.			
				<i>x</i> =	[1]
	(d)	Find $f^{-1}(x)$.		~	
				$f^{-1}(x) = \dots$	[2]
	(e)	Find $g\left(\frac{2}{x}\right)$.			
		Give your answer as a single :	fraction in its simplest fo	rm.	
					[2]
	(f)	Find x when $h^{-1}(x) = 4$.			

x =[1]

[Turn over

The diagrams show a cube, a cylinder and a hemisphere. The volume of each of these solids is 2000 cm^3 .

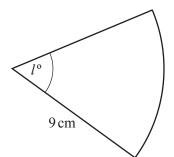

(i) Work out the height, h, of the cylinder.

(ii) Work out the radius, *r*, of the hemisphere.

r = cm [3]

(iii) Work out the surface area of the cube.

......cm² [3]



(i) Calculate the area of the triangle.

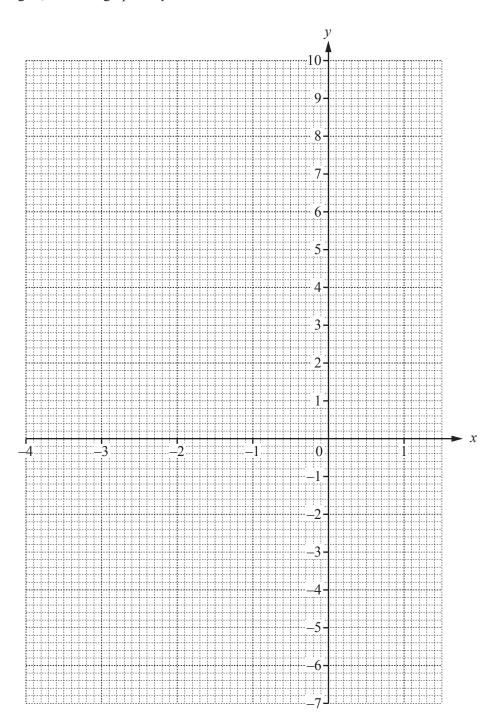
......cm² [2]

(ii) Calculate the perimeter of the triangle and show that it is 23.5 cm, correct to 1 decimal place. Show all your working.

(c)

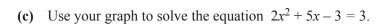
NOT TO SCALE

The perimeter of this sector of a circle is 28.2 cm.


Calculate the value of *l*.

[5]

8 The table shows some values of $y = 2x^2 + 5x - 3$ for $-4 \le x \le 1.5$.


x	-4	-3	-2	-1	0	1	1.5
у		0	-5		-3	4	

- (a) Complete the table.
- (b) On the grid, draw the graph of $y = 2x^2 + 5x 3$ for $-4 \le x \le 1.5$.

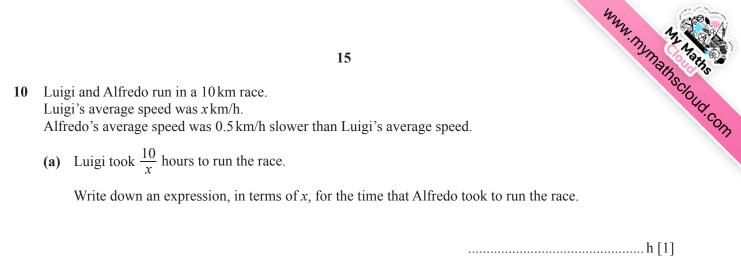
[3]

13

 $x = \dots$ [2]

(d) $y = 2x^2 + 5x - 3$ can be written in the form $y = 2(x + a)^2 + b$.

Find the value of *a* and the value of *b*.


a =

b =[3]

	14 WWW. TRY TRAINSCOME the <i>A</i> has equation $y = 5x - 4$. The <i>B</i> has equation $3x + 2y = 18$. Find the slope of	
	the <i>A</i> has equation $y = 5x - 4$. the <i>B</i> has equation $3x + 2y = 18$.	14.CO
(a)	Find the slope of	UN,
	(i) line A ,	
	[1]	
	(ii) line B .	
	[1]	
(b)	Write down the co-ordinates of the point where line <i>A</i> crosses the <i>x</i> -axis.	
	() [2]	
(c)	Find the equation of the line perpendicular to line <i>A</i> which passes through the point (10, 9). Give your answer in the form $y = mx + b$.	
	y =[4]	
(d)	Work out the co-ordinates of the point of intersection of line <i>A</i> and line <i>B</i> .	

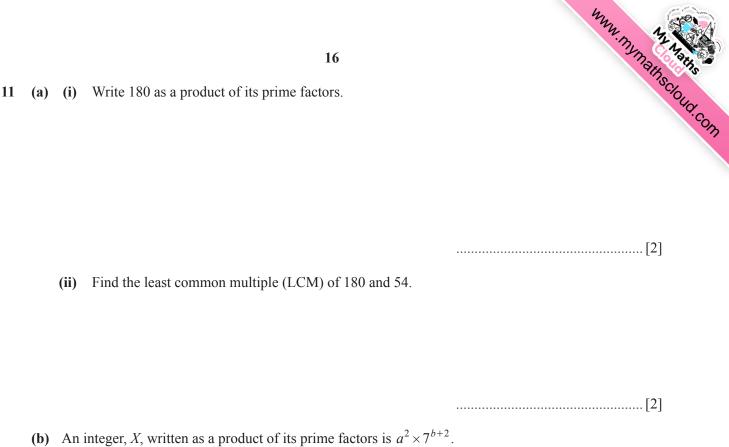
(.....)[3]

(e) Work out the area enclosed by line *A*, line *B* and the *y*-axis.

(b) Alfredo took 0.25 hours longer than Luigi to run the race.

(i) Show that $2x^2 - x - 40 = 0$.

[4]


(ii) Use the quadratic formula to solve $2x^2 - x - 40 = 0$. Show all your working and give your answers correct to 2 decimal places.

 $x = \dots$ [4]

(iii) Work out the time that Luigi took to run the 10 km race. Give your answer in hours and minutes, correct to the nearest minute.

..... h min [3]

Question 11 is printed on the next page.

(b) An integer, X, written as a product of its prime factors is $a^2 \times 7^{b+2}$ An integer, Y, written as a product of its prime factors is $a^3 \times 7^2$.

The greatest common factor (GCF) of *X* and *Y* is 1225. The least common multiple (LCM) of *X* and *Y* is 42875.

Find the value of *X* and the value of *Y*.

X =	 ••••	 	 	
Y =	 	 	 	[4]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge International Examinations Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cie.org.uk after the live examination series.

Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.