

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

MATHEMATICS (US)

Paper 4 (Extended) MARK SCHEME Maximum Mark: 130 0444/43

October/November 2017

www.mymathscloud.com

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Cambridge IGCSE – Mark Scheme PUBLISHED

Abbreviations

caocorrect answer onlydepdependentFTfollow through after erroriswignore subsequent workingoeor equivalentSCSpecial Casenfwwnot from wrong working

soi seen or implied

Question	Answer	Marks	Partial Marks
1(a)(i)	$180 \div (2+3+5) \times 5 = 90$	1	with no errors seen
1(a)(ii)	7.05 or 7.053	3	M2 for $\frac{x}{12} = \sin 36$ oe or better or B1 for 36 or 54 seen
1(b)(i)	13	2	M1 for 7.8 ÷ 3 soi
1(b)(ii)	36.9 or 36.86 to 36.87	3	B1 for smallest angle identified M1 for sin[] = $\frac{3}{5}$ oe or sin[] = $\frac{7.8}{their \mathbf{b}(\mathbf{i})}$ oe If zero scored, SC1 for calculation of 53.1
2(a)	343	1	
2(b)(i)	1	1	
2(b)(ii)	x^{10} final answer	1	
2(b)(iii)	$9x^{16}$ final answer	2	B1 for x^{12} or x^{16} or $(3x^8)^2$ seen
2(c)(i)	2(x-3)(x+3) final answer	2	M1 for $(2x+6)(x-3)$ or $(2x-6)(x+3)$ or $(x-3)(x+3)$
2(c)(ii)	$\frac{2(x+3)}{x+10}$ or $\frac{2x+6}{x+10}$ final answer nfww	3	M2 for $(x + 10)(x - 3)$ or M1 for $(x + a)(x + b)$ where $ab = -30$ or $a + b = 7$
3(a)	480	3	M2 for $456 \div \left(1 - \frac{5}{100}\right)$ oe or M1 for associating 456 with 95%
3(b)	261.47	2	M1 for $200 \times \left(1 + \frac{1.5}{100}\right)^{18}$

Cambridge IGCSE – Mark Scheme PUBLISHED

0444/43	Cambridge IGCSE – Mark Scheme PUBLISHED October/v Mun, Multiple 1.2 Marks Partial Marks 1.2 3 M2 for 1/2		
Question	Answer	Marks	Partial Marks
3(c)	1.2	3	M2 for $\sqrt[17]{\frac{2449.62}{2000}}$ oe, soi by 1.012[0] or M1 for $\frac{2449.62}{2000}$ or $2000 \times ()^{17} = 2449.62$
3(d)	$c - \frac{cp}{100}$ oe	2	M1 for $\frac{cp}{100}$ seen
4(a)	$80 < t \leqslant 100$	1	
4(b)	86 nfww	4	M1 for midpoints soi
			M1 for use of Σfx with x in correct interval including both boundaries
			M1 (dep on 2nd M1) for $\Sigma fx \div 150$
4(c)(i)	Reference to not knowing the individual values so we do not know the highest or the lowest values	1	
4(c)(ii)	62.4	2	M1 for 26 ÷ 150 or 360 ÷ 150
4(d)	$\frac{22}{150} \text{ oe}$	1	
4(e)(i)	$\frac{90}{22350}$ oe	2	M1 for $\frac{10}{150} \times \frac{9}{149}$ After zero scored, SC1 for answer $\frac{100}{22500}$ oe
4(e)(ii)	$\frac{440}{22350}$ oe	3	M2 for $\frac{10}{150} \times \frac{22}{149} + \frac{22}{150} \times \frac{10}{149}$ oe or M1 for $\frac{10}{150} \times \frac{22}{149}$ or $\frac{22}{150} \times \frac{10}{149}$ oe After zero scored, SC1 for answer $\frac{440}{22500}$ oe
4(f)	13, 8.5, 7.25, 1.1	3	B2 for 3 correct or B1 for 1 correct or for 3 correct FD.s 5.2, 3.4, 2.9, 0.44 oe

Cambridge IGCSE – Mark Scheme PUBLISHED

0444/43	Marks Scheme Cambridge IGCSE – Mark Scheme October/I NUMUNICATION NUMUNICATION NUMUNICATION October/I October/I NUMUNICATION October/I October		
Question	Answer	Marks	Partial Marks
5(a)(i)	Image at (0, 1), (0, 2), (-3, 1)	2	B1 for reflection in $y = 0$ or $x = k$
5(a)(ii)	Image at (0, 0), (0, -2), (6, -2)	2	
5(a)(iii)	Image at (-5, 4), (-5, 5), (-2, 4)	2	B1 for translation by $\begin{pmatrix} -5\\k \end{pmatrix}$ or $\begin{pmatrix} k\\3 \end{pmatrix}$
5(b)	Rotation 90° clockwise oe (4, -1)	3	B1 for each
6(a)	-7	1	
6(b)	5 - 2x	2	M1 for $2(3-x) - 1$
6(c)(i)	$\frac{4}{3}$ oe	2	M1 for $2x - 1 = 3 - x$
6(c)(ii)	-3	1	
6(d)	$\frac{x+1}{2}$ of final answer	2	M1 for $x = 2y - 1$ or $y + 1 = 2x$ or $\frac{y}{2} = x - \frac{1}{2}$
6(e)	$\frac{3x-2}{x}$ final answer	2	M1 for $3 - \frac{2}{x}$
6(f)	16	1	
7(a)(i)	25.5 or 25.46	2	M1 for $\pi \times 5^2 \times h = 2000$ oe
7(a)(ii)	9.85 or 9.847	3	M2 for $[r^3=] 2000 \div \left(\frac{2}{3}\pi\right)$ oe or M1 for $\frac{2}{3}\pi r^3 = 2000$ oe
7(a)(iii)	952 or 952.4	3	M2 for $[6 \times] \sqrt[3]{2000}^2$ or M1 for $\sqrt[3]{2000}$ or 6 times <i>their</i> area of one face
7(b)(i)	22.5 or 22.49	2	M1 for $\frac{1}{2} \times 7 \times 10 \times \sin 40$
7(b)(ii)	$\sqrt{(10^2 + 7^2 - 2 \times 10 \times 7 \cos 40)} + 7 + 10$	M3	M2 for $10^2 + 7^2 - 2 \times 10 \times 7 \cos 40$ or M1 for correct implicit cosine rule
	23.46	A2	

Cambridge IGCSE – Mark Scheme PUBLISHED

0444/43	Cambridge IGCSE – Mark Scheme PUBLISHEDOctobernMuno Muno Muno MarksAnswerMarksPartial Marks64.9 or 64.92 to 64.943M2 for $28.2 - 2 \times 9 = \frac{c}{2.60} \times 2 \times \pi \times 9$ oe		
Question	Answer	Marks	Partial Marks
7(c)	64.9 or 64.92 to 64.94	3	M2 for $28.2 - 2 \times 9 = \frac{c}{360} \times 2 \times \pi \times 9$ oe or M1 for $\frac{c}{360} \times 2 \times \pi \times 9$ soi
8(a)	9, -6, 9	3	B1 for each
8(b)	Correct graph	4	B3FT for 6 or 7 correct points or B2FT for 4 or 5 correct points or B1FT for 2 or 3 correct points
8(c)	-3.5 to -3.35 and 0.8 to 0.9	2FT	FT <i>their</i> graph B1FT for either
8(d)	$a = \frac{5}{4} \text{ or } 1\frac{1}{4} \text{ or } 1.25$ $b = -\frac{49}{8} \text{ or } -6\frac{1}{8} \text{ or } -6.125$	3	B2 for either correct or M1 for $[2]\left(x+\frac{5}{4}\right)^2$ seen isw or for $2x^2 + 4ax + 2a^2 + b$
9(a)(i)	5	1	
9(a)(ii)	$-\frac{3}{2}$ oe	1	
9(b)	$\left(\frac{4}{5}, 0\right)$ oe	2	M1 for $5x - 4 = 0$ soi
9(c)	y = -0.2x + 11 final answer	4	M2 for $y = -0.2x + b$ oe (any form) FT <i>their</i> (a) or B1FT for grad = $\frac{-1}{their(a)(i)}$ soi and M1 for substitution of (10, 9) into <i>their</i> equation
9(d)	(2, 6)	3	M1 for elimination of one variable A1 for $x = 2$ or $y = 6$
9(e)	13 oe	3	M2 for $(4+9) \times their 2 \div 2$ oe or B1 for 9 oe or 4 or -4 seen

Cambridge IGCSE – Mark Scheme PUBLISHED

0444/43	Cambridge IGCSE – Mark Scheme PUBLISHED October/n Marks Partial Marks 10 final answer		
Question	Answer	Marks	Partial Marks
10(a)	$\frac{10}{x-0.5}$ final answer	1	Accept $\frac{20}{2x-1}$
10(b)(i)	$\frac{10}{x - 0.5} - \frac{10}{x} = 0.25 \text{ oe}$	M1	FT their (a)
	10x - 10(x - 0.5) = 0.25x (x - 0.5) oe	M1	Clears algebraic denominators or collects as a single fraction FT <i>their</i> algebraic fractions dep on two fractions with algebraic denominators
	$10x - 10x + 5 = 0.25x^2 - 0.125x \text{ or}$ better	B1	Expands brackets
	$2x^2 - x - 40 = 0$	A1	Dep on M1M1B1 and no errors seen
10(b)(ii)	$\frac{1\pm\sqrt{(-1)^2-4\times2\times-40}}{2\times2} \text{ oe}$	B2	B1 for $\sqrt{(-1)^2 - 4(2)(-40)}$ or better or B1 for $\frac{-1 + \sqrt{q}}{2 \times 2}$ or $\frac{-1 - \sqrt{q}}{2 \times 2}$ or both
	-4.23 and 4.73 final answers	B1B1	SC1 for -4.229 and 4.729 or for -4.23 and 4.73 seen in working or for -4.73 and 4.23 as final answer or for -4.2 or -4.22 and 4.7 or 4.72 as final answer
10(b)(iii)	2 [hours] 7 [minutes]	3	B2 for 2.11 or 2.114 to 2.115 or 126.8 to 126.9 or 127 or M1 for 10 ÷ <i>their</i> positive root from (b)(ii)
11(a)(i)	$2^2 \times 3^2 \times 5$ oe	2	M1 for 3 correct prime factors in a tree or table seen before the first error or for 2, 3, 5 identified
11(a)(ii)	540	2	M1 for $2^2 \times 3^3 \times 5$ or 2×3^3 shown or answer $540k$
11(b)	X = 8575	4	B3 for $X = 8575$ or $Y = 6125$
	<i>Y</i> = 6125		or B2 for $a = 5$ or $b = 1$ soi or B1 for $1225 = 5^2 \times 7^2$ or $42875 = 5^3 \times 7^3$ or M1 for $a^2 \times 7^2$ [= 1225] or $a^3 \times 7^{b+2}$ [= 42875]