

Paper 2

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/02

For Examination from 2011

SPECIMEN MARK SCHEME

2 hours

MAXIMUM MARK: 80

www.mymainscloud.com

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

© UCLES 2010 0606/02/SM/11

www.mymathscloud.com

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

		nn	
	4	a.	My My
		Т	Pathsch 18
1	$\mathbf{A}^{-1} = \frac{1}{10} \begin{pmatrix} 4 & -6 \\ -7 & 13 \end{pmatrix}$	B1+B1	I MANAGERS COOK
	evaluate $\mathbf{A}^{-1} \begin{pmatrix} 41 \\ 24 \end{pmatrix}$	M1	
	x = 2, y = 2.5	A1	[4]
2	$k(2x-9)^2 6(2x-9)^2$	M1 A1	
	substitute $x = 7$ and $\frac{dx}{dt} = 4$ into $\frac{dy}{dt} = \frac{dy}{dx} \times \frac{dx}{dt}$	M1	
	600	A1	[4]
3	eliminate y use $b^2 - 4ac$ $m^2 + 10m - 39 * 0$ factorise 3 term quadratic in m or take square root -13 < m < 3	M1 DM1 A1 M1 A1	[5]
4	(a) 10, 3 and 15 multiply 3 values 450	B1 M1 A1	
	(b) 4 × (5 × 4 × 3) 240	B1+B1 B1	[6]
5	(i) $\frac{d}{dx}(\ln x) = \frac{1}{x}$ $1 + \ln x$	B1 B1	
	(ii) $\int (1 + \ln x) dx = x \ln x (+c)$	M1	
	$\int \ln x \mathrm{d}x = x \ln x - \int \! \mathrm{d}x (+c)$	M1	
	$x \ln x - x (+c)$	A1	[5]
6	(i) express as powers of 2 (or 4 or 8) applies rules of indices $[2x - (5 - x) = 4x - 3(x - 3)]$	M1 DM1 A1	
	(ii) $\lg (2y + 10) + \lg y = \lg \{y(2y + 10)\}\$ or $2 = \lg 100$ $2y^2 + 10y = 100$ oe 5 only	B1 B1 B1	[6]

© UCLES 2010 0606/02/SM/11

hun	4
WALL	My Maths Street Con
	18C/OUNT
	.com

7	(i)	speed of travel = 4.8 or distance downstream = 14	B1	3
	-	1.4		
		OR (4.8) (4.8)		
		draw right angle triangle with 1.4 and (4.8) at 90°	B1	
		$\sqrt{1.4^2 + (4.8)^2}$	M1	
		5	A1	
	(ii)	$\tan^{-1} \frac{(4.8)}{1.4}$ oe	M1	
		73.7 or 1.29 radians	A1	[6]
8	(i)	5	B1	
	(ii)	180 or π	B1	
	(iii)	8 and –2	B1+B1	
		rect start and endpoints	B1	
		veles in 0 to 2π	B1	
	corı	rect max and min points	B1	[7]
9		eliminate y (or x)	M1	
		$7x^2 - 42x + 35 = 0$ (or $7y^2 + 42y - 49 = 0$) oe	A1	
		solve 3 term quadratic	M1	
		x = 1 and 5 (or $y = -7$ and 1) find second coordinates	A1 M1	
		find mid-point	M1	
		use m_{AB} , $m_1m_2 = -1$ and coordinates of a point	M1	
		$y + 3 = -\frac{1}{2}(x - 3)$ or $x + 2y + 3 = 0$ or $y = -\frac{1}{2}x - \frac{3}{2}$	A1	[8]

		6	nnn	Mymath	Noths Schold Con
10 (i		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - 16x + 16$	B1		JOHO'COW
		equate to 0 and solve 3 term quadratic $x = 4, y = 0$	M1 A1 AG		
		$x = \frac{4}{3}y = 9\frac{13}{27}$ or $\frac{256}{27}$ or 9.48 or 9.5	Al Ad		
(i		integrate 4 0 3	M1		I
		$\frac{x^4}{4} - \frac{8x^3}{3} + 8x^2$	A1		I
		use limits of 4 (and 0)	DM1		I
		$21\frac{1}{3}$ or 21.3	A1	[8]	
11 (i		plot xy against $1/x$ with linear scales $xy = 4.5 + 3.24 + 2.82 + 2.64$	M1		I
		1/x 0.5 0.25 0.17 0.125	A2, 1, 0		I
(i		attempt at gradient using plotted points 5 ± 0.2	DM1 A1		
		intercept 2 ± 0.1 (or A1 if calculated from $y = mx + c$)	B1		I
		use $Y = mX + c$ in correct way	M1		I
		$y = \frac{5}{x^2} + \frac{2}{x}$ or $y = \frac{5+2x}{x^2}$ or $y = \frac{1}{x} \left(\frac{5}{x} + 2 \right)$	A1√		I
(i		read from graph or substitute in formula to find x x = 2.5 + 0.2	M1 Δ1		I
		$x = 2.5 \pm 0.2$ $y = 1.6 \pm 0.1$	A1 A1	[11]	I
12 EI					
(i	(i)	$\frac{OC}{2} = \cos 0.6 \text{ or } OC = 2 \cos 0.6 \text{ or } \frac{OC}{\sin 0.97} = \frac{2}{\sin \frac{\pi}{2}}$	M1		
		1.65	A1		I
		$CD = 2 \sin 0.6 \text{ or } CD = \sqrt{OD^2 - OC^2}$ 1.13	M1 A1		
(i	` '	6×0.6 complete plan $CD + 4 + r\theta + (6 - 1.65)$	B1 M1		I
		complete plan $CD + 4 + r\theta + (6 - 1.65)$ 13.1	A1		I
(i	(iii)	$\frac{1}{2} \times 6^2 \times 0.6$	B1		I
		complete plan $\frac{1}{2} r^2 \theta - \frac{1}{2} \times OC \times CD$	M1		I
		9.87	A1	[10]	I

© UCLES 2010 0606/02/SM/11

[10]

B1+B1+B1

M1A1

12 OR

(i)	$2t^2 - 12t + 16$
	equate to 0 and solve quadratic for 2 values 2 and 4
	Z and 4

(ii)
$$s = \int v \, dt$$
 M1

$$\frac{2}{3}t^3 - 6t^2 + 16t$$
use limits and subtract DM1

$$2\frac{2}{3} \text{ or } 2.67$$

© UCLES 2010 0606/02/SM/11

www.my.mainscloud.com

BLANK PAGE

© UCLES 2010 0606/02/SM/11