

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/01

Paper 1

For Examination from 2011

SPECIMEN MARK SCHEME

2 hours

MAXIMUM MARK: 80

www.mymainscloud.com

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

© UCLES 2010 0606/01/SM/11

www.mymathscloud.com

The following abbreviations may be used in a mark scheme or used on the scripts:

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

	•		mn 1
		4	Man. M.
1	(i) correct diagram	B1	SCIONA
	(ii) correct diagram	B1	
	(iii) correct diagram	B1 [3]	
2	$(2x+1)^{2} > 8x + 9$ $4x^{2} - 4x - 8 > 0$ $x^{2} - x - 2 > 0$	M1	M1 for simplification to 3 term quadratic
	(x+1)(x-2) > 0 (x+1)(x-2) > 0 Leads to critical values $x = -1,2$ $x < -1$ and $x > 2$	DM1 A1 √A1 [4]	DM1 for factorisation A1 for critical values Follow through on their critical values.
3	LHS = $\frac{\sin^2 A + 1 + \cos^2 A + 2\cos A}{(1 + \cos A)\sin A}$	M1 A1	M1 for attempt to deal with fractions and attempt to obtain numerator A1 correct
	$= \frac{2 + 2\cos A}{(1 + \cos A)\sin A}$	M1	M1 for use of $\sin^2 A + \cos^2 A = 1$
	$= \frac{2}{\sin A} \text{ leading to } 2\cos \text{ ec} A$	A1 [4]	
4	Substitution of $x = 1$ leading to $a + b + 4 = 0$	M1	M1 for substitution of $x = 1$ and equated to 3
	Substitution of $x = -\frac{1}{2}$ leading to	M1	M1 for substitution of $x = -\frac{1}{2}$ and equated to 6
	-a + 2b - 28 = 0	A1	A1 for both correct
	Leading to $a = -12$, $b = 8$	M1 A1 [5]	M1 for solution A1 for both
5	(i) $2t^2 - 9t - 5 = 0$ (2t+1)(t-5) = 0	M1 DM1	M1 for attempting to form a quadratic in <i>t</i> DM1 for attempt to solve a 3 term quadratic
	$t=\frac{1}{2},t=5$	A1 [3]	A1 for both
	(ii) $x^{\frac{1}{2}} = -0.5, 5$ x = 0.25, 25	M1 A1,A1 [3]	M1 for realising that $x^{0.5}$ is equivalent to t (or valid attempt at solution)
6	(i) $\mathbf{a} = \frac{1}{13} (5\mathbf{i} - 12\mathbf{j})$	M1, A1 [2]	M1 for a valid attempt to obtain magnitude.
	(ii) $q(5\mathbf{i} - 12\mathbf{j}) + p\mathbf{i} + \mathbf{j} = 19\mathbf{i} - 23\mathbf{j}$ 5q + p = 19 -12q + 1 = -23 Leading to $q = 2, p = 9$	M1 M1 A1 [3]	M1 for equating like vectors M1 for solution of (simultaneous) equations A1 for both

© UCLES 2010 0606/01/SM/11

hy.	6. CO.
mm. Myma	13 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15
3/2	04
179	A CONTRACTOR

			5	N. M. Math.	S
7	(i) $y = 4x^2 - 12x + 3$ $y = (2x - 3)^2 - 6$	B1 B1 B1 [[3]	B1 for 2 (part of linear factor) B1 for -3 (part of linear factor) B1 for -6	Con
	(ii) $\left(\frac{3}{2}, -6\right)$	√B1, √B1 [[2]	Follow through on their a, b and c Allow calculus method.	
	(iii) f≥-6	√B1 [[1]	Follow through on their <i>c</i>	
8	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\mathrm{e}^{-2x}(+c)$	B1		B1 for $-2e^{-2x}$	
	When $\frac{dy}{dx} = 3$, $x = 0$, $c_1 = 5$ $\frac{dy}{dx} = -2e^{-2x} + 5$	M1 A1		M1 for attempt to find c_1	
	$dx y = e^{-2x} + 5x(+ c_2) When x = 2, y = e^{-4} : c_2 = -10 y = e^{-2x} + 5x - 10$	B1 M1 √A1 [[6]	B1 for $-2e^{-2x}$ M1 for attempt to find c_2 $\sqrt{-2}$ times their c_1	
9	(i) $2^5 + {}^5C_12^4(-3x) + {}^5C_22^3(-3x)^2$ $32 - 240x + 720x^2$	B1 B1 B1 [[3]	B1 for 32 or 2 ⁵ B1 for -240 B1 for 720.	
	(ii) $32a = 64$, $a = 2$ 32b - 240a = -192, b = 9 -240b + 720a = c c = -720	B1 M1 A1 M1 A1 [[5]	B1 for $a = 2$ M1 for equation in a and b equated to ± 192 A1 for $b = 9$ M1 for equation in a and b equated to c A1 for $c = -720$	
10	(a) (i) $fg(x) = f\left(\frac{x}{x+2}\right)$	M1		M1 for order	
	$=3-\frac{x}{x+2}$	A1 [[2]		
	(ii) $3 - \frac{x}{x+2} = 10$ leading to $x = -1.75$	DM1 A1 [[2]	DM1 for dealing with fractions sensibly	
	(b) (i) $h(x) > 4$	B1 [[1]		
	(ii) $h^{-1}(x) = e^{x-4}$ $h^{-1}(9) = e^{5}$ (≈ 148) or $4 + \ln x = 9$, leading to $x = e^{5}$	M1 A1 [[2]	M1 for attempting to obtain inverse function	
	(iii) correct graphs	B1 B1		B1 for each curve	
			[3]	B1 for idea of symmetry	

	6	M1 for an equation in tan^22x M1 for attempt to solve using $2x$ correctly
11 (i) $\tan^2 2x = 3$ $\tan 2x = (\pm)\sqrt{3}$ $2x = 60^\circ, 120^\circ, 240^\circ, 300^\circ$ $x = 30^\circ, 60^\circ, 120^\circ, 150^\circ$	M1 DM1 A1, A1 [4]	M1 for an equation in tan ² 2x M1 for attempt to solve using 2x correctly A1 for any pair
(ii) $2\csc^2 y + \csc y - 3 = 0$ $(2\csc y + 3)(\csc y - 1) = 0$ $\csc y = -\frac{3}{2}, 1$ $\sin y = -\frac{2}{3}, 1$	M1, A1 M1	M1 for correct use of identity or other valid method A1 for a correct quadratic M1 for solution of quadratic and attempt to solve correctly
$y = 221.8^{\circ}, 318.2^{\circ}, y = 90^{\circ}$	A1, A1 [5]	A1 for 221.8°, 318.2°, A1 for 90°
(iii) $\cos\left(z + \frac{\pi}{2}\right) = -\frac{1}{2}$ $z + \frac{\pi}{2} = \frac{2\pi}{3}, \frac{4\pi}{3}$ $z = \frac{\pi}{6}, \frac{5\pi}{6}, \text{ allow } 0.52, 2.62 \text{ rads}$	M1 A1,A1	M1 for dealing with sec and order of operations A1 for each
12 EITHER	[3]	
(i) $\frac{dy}{dx} = \frac{(x+1)2x - x^2}{(x+1)^2}$ $= \frac{x(x+2)}{(x+1)^2}$	M1 A1	M1 for attempt to differentiate a quotient A1 correct allow unsimplified
$\frac{dy}{dx} = 0, x = 0, -2$ $y = 0, -4$	DM1 A1,A1 [5]	DM1 for equating to zero and an attempt to solve A1 for each pair (could be $x = 0$ and $x = -2$)
(ii) gradient of normal = $-\frac{4}{3}$	M1	M1 for attempt to obtain gradient of the normal
normal $y = -\frac{4}{3}x + \frac{11}{6}$, leads to	A1	A1 for a correct (unsimplified) normal equation
<i>M</i> (1.375,0) <i>N</i> (0, -4)	√B1 B1	Follow through on their normal B1 for N
Area = 2.75	M1 √A1 [6]	M1 for attempt to get area of triangle Ft on their <i>M</i> and <i>N</i> (must be on axes)

© UCLES 2010 0606/01/SM/11

12 OR

(i)
$$\frac{dy}{dx} = e^{x-2} - 2$$
$$\frac{dy}{dx} = 0, e^{x-2} = 2$$
$$x = 2 + \ln 2$$
$$(2.69)$$
$$y = 4 - 2\ln 2$$

(2.61)

$$\frac{d^2y}{dx^2} = e^{x-2}$$
, always +ve : min

(ii)

$$\int_{0}^{3} (e^{x-2} - 2x + 6) dx = \left[e^{x-2} - x^{2} + 6x \right]_{0}^{3}$$

$$= (e - 9 + 18) - (e^{-2} + 6)$$

$$k = 9$$

B1 B1 for
$$e^{x-2}$$

A1 A1 for
$$x$$

A1 A1 for
$$y$$

M1 for correctly applying limits

$$A1 \ for \ e-e^{-2}$$

M1

A1

© UCLES 2010 0606/01/SM/11

www.my.mainscioud.com

BLANK PAGE

© UCLES 2010 0606/01/SM/11