

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/13 October/November 2018

www.mymathscloud.com

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2018 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Cambridge IGCSE – Mark Scheme PUBLISHED

Generic Marking Principles

October/ Mymathscloud.com These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question •
- the standard of response required by a candidate as exemplified by the standardisation scripts. .

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit • is given for valid answers which go beyond the scope of the syllabus and mark scheme. referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do .
- marks are not deducted for errors
- marks are not deducted for omissions •
- answers should only be judged on the quality of spelling, punctuation and grammar when these • features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the guality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Cambridge IGCSE – Mark Scheme PUBLISHED

October/ Mun. My Mains Manaths Cloud. Com

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

606/13	Cambridge IGCSE PUBLIS		me October/i Munu. Munu. Munu. Munu. Munu. Guidance
Question	Answer	Marks	Guidance
1(a)	${}^{5}C_{3} \times 2^{2} \times (px)^{3}$	B1	
	$40 p^{3} = -\frac{8}{25}$ $p^{3} = -\frac{8}{1000}$	M1	equating <i>their</i> coefficient of x^3 to $-\frac{8}{25}$ and finding p^3
	$p = -\frac{1}{5}$ or $p = -0.2$	A1	
1(b)	${}^{8}C_{4} \times (2x^{2})^{4} \times (\frac{1}{4x^{2}})^{4}$	B1	
	$70 \times 16 \times \frac{1}{256}$	M1	at least two of 70, 16, $\frac{1}{256}$ correct in an evaluation of a three-term product
	$\frac{35}{8}$, 4.375, $4\frac{3}{8}$	A1	cao
2(i)	$\theta = \frac{20 - 2r}{r}$	B1	
	Area = $\frac{1}{2}r^2\left(\frac{20-2r}{r}\right)$	M1	use of <i>their</i> θ in terms of <i>r</i> in formula for sector area
	$A = 10r - r^2$	A1	simplification to get given answer
	Alternative		
	s = 20 - 2r	B1	
	$=\frac{1}{2}r(20-2r)$	M1	use of formula for sector area using <i>their</i> expression for <i>s</i> in terms of <i>r</i>
	$A = 10r - r^2$	A1	simplification to get given answer
2(ii)	$\frac{dA}{dr} = 10 - 2r$ When $\frac{dA}{dr} = 0$, $r = 5$	M1	for $\frac{dA}{dr} = 10 - kr$, equating to zero and solving for <i>r</i>
	$\theta = \frac{\left(20 - 2 \times 5\right)}{5}$	M1	Dep substitution of <i>their</i> value of <i>r</i> to get θ
	$\theta = 2$	A1	

0606/13	- Cambridge IGCSE PUBLIS		me October/1 MMM. MARKAN MARKA
Question	Answer	Marks	Guidance
3(i)	$AC^{2} = \left(5\sqrt{3} + 5\right)^{2} + \left(5\sqrt{3} - 5\right)^{2}$	M1	correct use of Pythagoras or correct use of cosine rule with cos90
	$= 75 + 25 + 50\sqrt{3} + 75 + 25 - 50\sqrt{3}$ $= 200$	M1	correct expansion to 6 or 8 terms
	$AC = 10\sqrt{2}$	A1	from $AC^2 = 200$
3(ii)	$\tan BCA = \frac{5\sqrt{3}+5}{5\sqrt{3}-5} \text{ oe}$	B1	
	$=\frac{(5\sqrt{3}+5)(5\sqrt{3}+5)}{(5\sqrt{3}-5)(5\sqrt{3}+5)}$ oe	M1	for rationalisation
	$=\frac{100+50\sqrt{3}}{50}$ oe		
	$=2+\sqrt{3}$	A1	
4(i)		M1	for $10(1+\cos 3x)^9 f(x)$
		M1	for $k\sin 3x(1+\cos 3x)^9$
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -30\sin 3x \left(1 + \cos 3x\right)^9$	A1	
	When $x = \frac{\pi}{2}$, $\frac{dy}{dx} = 30$	A1	
4(ii)	Use of $\frac{dy}{dx} \times \frac{dx}{dt} = \frac{dy}{dt}$ with $\frac{dy}{dt} = 6$	M1	$their\frac{\mathrm{d}y}{\mathrm{d}x} \times \frac{\mathrm{d}x}{\mathrm{d}t} = 6$
	$\frac{\mathrm{d}x}{\mathrm{d}t} = \frac{1}{5} \text{ or } 0.2$	A1	FT from <i>their</i> answer from part (i)

606/13		CSE – Mark Scher BLISHED	me October/1 Mun Mannath Guidance change of base
Question	Answer	Marks	Guidance
5(i)	$\log_9 4 = \frac{\log_3 4}{\log_3 9}$	B1	change of base
	$= \frac{1}{2} \log_3 4$ $= \frac{1}{2} \log_3 2^2 \text{ or } \log_3 \sqrt{4}$ $= \log_3 2$	B1	Dep must have B1 for change of base and full working
	Alternative A		
	$\log_9 4 = 2\log_9 2$	B1	use of power rule
	$=\frac{2\log_3 2}{\log_3 9}$ $=\frac{2\log_3 2}{2\log_3 3}$ $=\log_3 2$	B1	Dep change of base and full working
	Alternative B		
	$x = \log_9 4 \implies 9^x = 4$ $9^x = 4 \implies 3^{2x} = 4$	B1	correct use of indices to reach $3^{2x} = 4$
	$\Rightarrow 3^{x} = 2 \Rightarrow x = \log_{3} 2$ $\therefore \log_{9} 4 = \log_{3} 2$	B1	Dep full working
	Alternative C		
	$\log_9 4 = \frac{\log_{10} 4}{\log_{10} 9}$	B1	change of base and use of power rule
	$=\frac{2\log_{10} 2}{2\log_{10} 3}$		
	$=\log_3 2$	B1	Dep change of base and full working

06/13	Cambridge IGCSE – M PUBLISHE I		me October/1 m_{main} Guidance for $\log_3 2x = 3$
Question	Answer	Marks	Guidance
5(ii)	$\log_3 2 + \log_3 x = 3$ $\log_3 2x = 3$	B1	for $\log_3 2x = 3$
	$3^3 = 2x$	B1	
	$x = 13.5, \ x = \frac{27}{2}$	B1	
	Alternative		
	$\log_3 x = \log_3 27 - \log_3 2$	B1	
	$= \log_3 \frac{27}{2}$	B1	
	$x = 13.5, x = \frac{27}{2}$	B1	
6(i)	$\frac{\mathrm{d}s}{\mathrm{d}t} = -6\mathrm{e}^{-0.5t} + 4$	M1	for $ke^{-0.5t} + 4$
	When $\frac{ds}{dt} = 0$, $e^{-0.5t} = \frac{2}{3}$ $-0.5t = \ln \frac{2}{3}$ $t = -2 \ln \frac{2}{3}$	M1	Dep equating to zero and correct order of operations to solve for <i>t</i>
	t = 0.811	A1	
6(ii)		M1	for $ke^{-0.5t}$
	$\frac{\mathrm{d}^2 s}{\mathrm{d}t^2} = 3\mathrm{e}^{-0.5t}$	A1	
6(iii)	$3e^{-0.5t} = 0.3$ $e^{-0.5t} = 0.1$ $t = \frac{\ln 0.1}{-0.5}$	M1	correct order of operations and correct use of ln to solve $ke^{-0.5t} = 0.3$ for t
	$s = 12e^{-0.5 \times 4.605} + 4 \times 4.605 - 12$	M1	Dep use of <i>t</i> to obtain <i>s</i>
	s = 7.62	A1	
6(iv)	$e^{-0.5t}$ is always positive or $e^{-0.5t}$ can never be zero or negative	B1	correct comment about $e^{-0.5t}$

606/13	Cambridge IGCS PUBI	SE – Mark Scher ₋ ISHED	me October/ WWW. Dynaith Guidance
Question	Answer	Marks	Guidance
7(i)	$\overrightarrow{AD} = m(\mathbf{c} - \mathbf{a})$	B1	
7(ii)	$\overrightarrow{AD} = \overrightarrow{OD} - \mathbf{a}$	B1	for $\overrightarrow{OD} = \frac{2}{3}\mathbf{b}$
	$=\frac{2}{3}\mathbf{b}-\mathbf{a}$	B1	FT their \overrightarrow{OD} if $\overrightarrow{OD} = k\mathbf{b}$
7(iii)	$m(\mathbf{c}-\mathbf{a})=\frac{2}{3}\mathbf{b}-\mathbf{a}$	M1	equating parts (i) and (ii)
	$24\mathbf{a}(1-m) + 24m\mathbf{c} = 16\mathbf{b}$ Comparing with $15\mathbf{a} + 9\mathbf{c} = 16\mathbf{b}$	M1	attempt to eliminate or compare like vectors using given condition
	$m = \frac{3}{8}$	A1	
8(i)	$5 \leq f(x) \leq 6 \text{ or } [5,6] \text{ oe}$	B2	B1 for $5 \leq f(x) \leq p$ ($p > 5$) or for $q \leq f(x) \leq 6$ ($q < 6$)
8(ii)	$x = \sin\frac{y}{4} + 5$	M1	complete valid attempt to obtain the inverse with operations in correct order.
	$y = 4\sin^{-1}(x-5)$	A1	
	Range $0 \leq y \leq 2\pi$	B1	
8(iii)	$2\left(\sin\frac{\left(x-\frac{\pi}{3}\right)}{4}+5\right) (=11)$	B1	for $\sin \frac{\left(x - \frac{\pi}{3}\right)}{4} + 5$
	$\sin\frac{\left(x-\frac{\pi}{3}\right)}{4} = \frac{1}{2}$	M1	for $\sin\left(\frac{x-\frac{\pi}{3}}{4}\right) = k$
	$x = 4\sin^{-1}\left(\frac{1}{2}\right) + \frac{\pi}{3} \text{ oe}$	M1	Dep for use of \sin^{-1} and correct order of operations to obtain <i>x</i> . Allow one +/- or ×/ ÷ sign error
	$x = \pi$ or 3.14	A1	$x = \pi$ and no other solutions in range

$\frac{dx (x + y) - 3x^{2} + 1}{y^{2} + 1} = \frac{3x^{2} + 1}{3x^{2} + 1} = \frac{3x^{2} + 1}{x^{4}}$ $\frac{dy}{dx} = \frac{x^{2} \frac{6x}{3x^{2} + 1} - 2x \ln(3x^{2} + 1)}{x^{4}}$ $\frac{dy}{dx} = \left(\frac{-2}{x^{3}}\right) \ln(3x^{2} + 1) + \left(\frac{1}{x^{2}}\right) \frac{6x}{(3x^{2} + 1)}$ $\frac{x^{2} f(x) - 2x \ln(3x^{2} + 1)}{x^{4}}$ $\frac{x^{4}}{\sqrt{x^{4}}} = -0.410$ $\frac{x^{1}}{\sqrt{x^{4}}} = -0.410$ $\frac{x^{1}}{\sqrt{x^{4}}} = -0.410$ $\frac{x^{1}}{\sqrt{x^{4}}} = -0.410$ $\frac{x^{2}}{\sqrt{x^{4}}} = -0.410$ $\frac{x^{1}}{\sqrt{x^{4}}} = -0.410$ $\frac{x^{1}}{\sqrt{x^{4}}} = -0.410$ $\frac{x^{1}}{\sqrt{x^{4}}} = -0.410$ $\frac{x^{2}}{\sqrt{x^{2}}} = $	0606/13	Cambridge IGCSE – Mark Scheme PUBLISHED October/i Winninging n Answer Marks Guidance $\frac{d}{d}(\ln(3x^2+1)) = \frac{6x}{2x^2+1}$ B1 for $\frac{6x}{2x^2+1}$				
$\frac{dx}{dx} = \frac{x^2 \frac{6x}{3x^2 + 1} - 2x\ln(3x^2 + 1)}{x^4}$ $\frac{dy}{dx} = \frac{x^2 \frac{6x}{3x^2 + 1} - 2x\ln(3x^2 + 1)}{x^4}$ $\frac{dy}{dx} = \left(\frac{-2}{x^3}\right)\ln(3x^2 + 1) + \left(\frac{1}{x^2}\right)\frac{6x}{(3x^2 + 1)}$ $\frac{x^2 f(x) - 2x\ln(3x^2 + 1)}{x^4}$ $\frac{x^4}{(x^4 - 1)^2} + \left(\frac{1}{x^2}\right)f(x)$ $\frac{x^2 f(x) - 2x\ln(3x^2 + 1)}{x^4} + \left(\frac{1}{x^2}\right)f(x)$ $\frac{x^2 f(x) - 2x\ln(3x^2 + 1)}{x^4} + \left(\frac{1}{x^2}\right)f(x)$ $\frac{x^4}{(x^4 - 1)^2} + \left(\frac{1}{x^4}\right)f(x)$ $\frac{x^4}{(x^4 - 1)^4} + \left(\frac{1}{x$	Question	Answer	Marks	Guidance	loud.	
$\frac{dy}{dx} = \frac{x^{2} \frac{3x^{2}+1}{3x^{2}+1} - 2x \ln(3x^{2}+1)}{x^{4}}$ product $\frac{dy}{dx} = \left(\frac{-2}{x^{3}}\right) \ln(3x^{2}+1) + \left(\frac{1}{x^{2}}\right) \frac{6x}{(3x^{2}+1)}$ $\frac{x^{2} f(x) - 2x \ln(3x^{2}+1)}{x^{4}}$ or for $\left(-\frac{2}{x^{3}}\right) \ln(3x^{2}+1) + \left(\frac{1}{x^{2}}\right) f(x)$ When $x = 2$, $\frac{dy}{dx} = -0.410$ Gradient of perp = 2.436 M1 use of $-\frac{1}{m}$ with a gradient obtain by differentiation When $x = 2$, $y = 0.641$ or $\frac{1}{4} \ln 13$ B1 Normal: $y - 0.641 = 2.436(x - 2)$ M1 Dep $y = 2.44x - 4.23$ A1 10(i) $x + 8 = 12 + x - x^{2}$ $x^{2} = 4$, $x = \pm 2$ M1 correct method of solution to obtain x or y	9	$\frac{\mathrm{d}}{\mathrm{d}x}\left(\ln\left(3x^2+1\right)\right) = \frac{6x}{3x^2+1}$	B1	for $\frac{6x}{3x^2+1}$	COM	
$\frac{dy}{dx} = \left(\frac{-2}{x^3}\right) \ln \left(3x^2 + 1\right) + \left(\frac{1}{x^2}\right) \frac{6x}{(3x^2 + 1)}$ $\frac{x^2 f(x) - 2x \ln (3x^2 + 1)}{x^4}$ or for $\left(-\frac{2}{x^3}\right) \ln (3x^2 + 1) + \left(\frac{1}{x^2}\right) f(x)$ $\frac{A1}{When \ x = 2, \ \frac{dy}{dx} = -0.410$ $\frac{A1}{Gradient of perp = 2.436}$ $\frac{M1}{When \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{When \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 2, \ y = 0.641 \ or \ \frac{1}{4} \ln 13$ $\frac{B1}{V}$ $\frac{Vhen \ x = 12 \ x - x^2}{x^2 = 4, \ x = \pm 2}$ $\frac{M1}{V}$ $\frac{Vhen \ x = 12 \ x - x^2}{x \ or \ y}$		$\frac{dy}{dx} = \frac{x^2 \frac{6x}{3x^2 + 1} - 2x \ln(3x^2 + 1)}{x^4}$	M1			
$\frac{x + (x) - 2x \ln(3x^{-} + 1)}{x^{4}}$ or for $\left(-\frac{2}{x^{3}}\right) \ln(3x^{2} + 1) + \left(\frac{1}{x^{2}}\right) f(x)$ When $x = 2$, $\frac{dy}{dx} = -0.410$ Gradient of perp = 2.436 When $x = 2$, $y = 0.641$ or $\frac{1}{4} \ln 13$ When $x = 2$, $y = 0.641$ or $\frac{1}{4} \ln 13$ Normal: $y - 0.641 = 2.436(x - 2)$ y = 2.44x - 4.23 M1 Dep y = 2.44x - 4.23 A1 10(i) $x + 8 = 12 + x - x^{2}$ $x^{2} = 4$, $x = \pm 2$ M1 correct method of solution to obtain x or y						
or for $\left(-\frac{2}{x^3}\right)\ln\left(3x^2+1\right)+\left(\frac{1}{x^2}\right)f(x)$ When $x = 2$, $\frac{dy}{dx} = -0.410$ Gradient of perp = 2.436 M1 use of $-\frac{1}{m}$ with a gradient obtain by differentiation When $x = 2$, $y = 0.641$ or $\frac{1}{4}\ln 13$ M1 Dep y = 2.44x - 4.23 A1 10(i) $x + 8 = 12 + x - x^2$ $x^2 = 4$, $x = \pm 2$ M1 Correct method of solution to obtain $x + 8 = 12 + x - x^2$ $x^2 = 4$, $x = \pm 2$ M1 Correct method of solution to obtain $x + 8 = 12 + x - x^2$ $x + 8 = 12 + x - x^2$ $x + 8 = 12 + x - x^2$ $x + 8 = 12 + x - x^2$ $x^2 = 4$, $x = \pm 2$ M1 Correct method of solution to obtain $x + 8 = 12 + x - x^2$ $x + 8 = 12 + x - x^2$		$\frac{x^2 f(x) - 2x \ln(3x^2 + 1)}{4}$	A1			
When $x = 2$, $\frac{1}{dx} = -0.410$ M1use of $-\frac{1}{m}$ with a gradient obtain by differentiationGradient of perp = 2.436M1use of $-\frac{1}{m}$ with a gradient obtain by differentiationWhen $x = 2$, $y = 0.641$ or $\frac{1}{4} \ln 13$ B1Normal: $y - 0.641 = 2.436(x - 2)$ M1Dep $y = 2.44x - 4.23$ A110(i) $x + 8 = 12 + x - x^2$ $x^2 = 4$, $x = \pm 2$ M1correct method of solution to obt x or y		50				
m m m m m by differentiation When $x = 2, y = 0.641$ or $\frac{1}{4} \ln 13$ B1 B1 m m Normal: $y - 0.641 = 2.436(x - 2)$ M1 Dep $y = 2.44x - 4.23$ A1 10(i) $x + 8 = 12 + x - x^2$ M1 correct method of solution to obtool x or y		When $x = 2$, $\frac{dy}{dx} = -0.410$	A1			
When $x = 2, y = 0.641$ or $-\frac{1}{4}\ln 13$ M1 Dep Normal: $y - 0.641 = 2.436(x - 2)$ M1 Dep $y = 2.44x - 4.23$ A1 10(i) $x + 8 = 12 + x - x^2$ $x^2 = 4, x = \pm 2$ M1 correct method of solution to obt x or y		Gradient of perp = 2.436	M1	use of $-\frac{1}{m}$ with a gradient obtained by differentiation		
Interview		When $x = 2$, $y = 0.641$ or $\frac{1}{4} \ln 13$	B1			
10(i) $x+8=12+x-x^2$ $x^2=4$, $x=\pm 2$ M1 correct method of solution to obt		Normal: $y - 0.641 = 2.436(x - 2)$	M1	Dep		
$x^{2} = 4$, $x = \pm 2$ x or y		y = 2.44x - 4.23	A1			
$y^{2} - 16y + 60 = 0$ y = 6 or y = 10	10(i)	$x^{2} = 4$, $x = \pm 2$ or $y^{2} - 16y + 60 = 0$	M1	correct method of solution to obtain <i>x</i> or <i>y</i>		
x = -2, y = 6 and $y = 10$		-	A2	or for either point from a correctly		
10(ii) M1 for $12x + px^2 + qx^3$ (+c)	10(ii)		M1	for $12x + px^2 + qx^3$ (+c)		
$12x + \frac{x^2}{2} - \frac{x^3}{3} (+c)$ A1		$12x + \frac{x^2}{2} - \frac{x^3}{3}$ (+c)	A1			

0606/13	Cambridge IGCSE – M PUBLISHE I		me Octobern mynathson Guidance FT area of the trapezium unsimplified	
Question	Answer	Marks	Guidance	loud.
10(iii)	$\left[12x + \frac{x^2}{2} - \frac{x^3}{3}\right]_{-2}^2 - \left(\frac{1}{2}(6+10) \times 4\right)$	B1	FT area of the trapezium unsimplified $\left(\frac{1}{2}(6+10)\times 4\right)$ or $\left[\frac{2^2}{2}+8\times 2\right]-\left[\frac{(-2)^2}{2}+8\times (-2)\right]$ (= 32)	COM
	$\left[12 \times 2 + \frac{2^2}{2} - \frac{2^3}{3}\right] - \left[12 \times -2 + \frac{(-2)^2}{2} - \frac{(-2)^3}{3}\right]$	M1	correct use of correct limits for area under the curve using <i>their</i> integral of the form $12x + px^2 + qx^3$	
	$=\frac{128}{3}$ oe	A1		
	$=\frac{32}{3}$ oe	A1		
	Alternative			
	$\int_{-2}^{2} 12 + x - x^{2} - x - 8 dx$ $= \int_{-2}^{2} 4 - x^{2} dx$	M1	subtraction of the two equations with intent to integrate the result	
	$= \left[4x - \frac{x^3}{3}\right]_{-2}^2$	A1		
	$\left[4 \times 2 - \frac{8}{3}\right] - \left[4 \times -2 + \frac{8}{3}\right]$	M1	Dep for correct application of limits	
	$=\frac{32}{3}$ oe	A1		
11(i)	$p\left(\frac{1}{2}\right) = a\left(\frac{1}{2}\right)^3 + 17\left(\frac{1}{2}\right)^2 + b\left(\frac{1}{2}\right) - 8$	M1	expression for $p\left(\frac{1}{2}\right)$	
	$p(-3) = a(-3)^3 + 17(-3)^2 + b(-3) - 8$	M1	expression for $p(-3)$	
	$\frac{a}{8} + \frac{17}{4} + \frac{b}{2} - 8 = 0$ -27a + 153 - 3b - 8 = -35	A1	both equations correct (allow equivalents and terms not collected but powers should be evaluated)	
	Leading to $a=b=6$	A1	from correct equations with evidence that both have been found correctly in order to verify that $a = b$	

0606/13	Cambridge IGCSE – M PUBLISHEI	me Octobern my mains cloud Guidance B1 for $3x^2$ and +8 from factorisation	THIS .	
Question	Answer	Marks	Guidance	14
11(ii)	$(2x-1)(3x^2+10x+8)$	B2	B1 for $3x^2$ and +8 from factorisation or for $3x^2 + 10x$ from long division	'OM
11(iii)	(2x-1)(x+2)(3x+4)	B1	cao	
11(iv)	$\sin\theta = \frac{1}{2}$	B1		
	$\theta = 30^{\circ}, 150^{\circ}$	B2	B1 for a first correct solution B1 for a second correct solution with no extras in range $0 \le \theta \le 180$ and no solution arising from other factors.	