

Cambridge Assessment International Education Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/22 October/November 2017

www.mymathscloud.com

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Cambridge IGCSE – Mark Scheme PUBLISHED

October/ Mymathscloud.com The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- Μ Method marks, awarded for a valid method applied to the problem.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- В Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

- awrt answers which round to correct answer only cao dependent dep follow through after error FT isw ignore subsequent working not from wrong working nfww or equivalent oe
- rounded or truncated rot
- SC Special Case
- soi seen or implied

0606/22	Cambridge IGCSE – Mark Scheme PUBLISHEDOctober/iNumerical MarksAnswerMarksPartial Marks $z^2 = 7 + 4\sqrt{3}$ B1Accept $4 + 3 + 4\sqrt{3}$			S. S
Question	Answer	Marks	Partial Marks	r
1	$z^2 = 7 + 4\sqrt{3}$	B1	Accept $4+3+4\sqrt{3}$	COM
	$a(7+4\sqrt{3})+b(2+\sqrt{3})=1+\sqrt{3}$	M1	Equate both $\sqrt{3}$ terms and constant terms to obtain two equations in <i>a</i> and <i>b</i> .	
	7a + 2b = 1 $4a + b = 1$	A1	Both correct. Accept equation with a multiple of $\sqrt{3}$	
	Attempt to solve a pair of linear simultaneous eqns to $a =$ or $b =$	M1	M1dep	
	a = 1 and $b = -3$	A1		
2	$2x^{1.5} + 6x^{-0.5} = x\left(x^{0.5} + 5x^{-0.5}\right)$	M1	Attempt to multiply by $x^{0.5} + 5x^{-0.5}$ or $x^{0.5}$ or divide by $x^{0.5}$	
	$2x^{1.5} + 6x^{-0.5} = x^{1.5} + 5x^{0.5} \text{ or}$ $x^{1.5} - 5x^{0.5} + 6x^{-0.5} = 0$ or $\frac{2x^2 + 6}{x + 5} = x \text{ or } \frac{2x + \frac{6}{x}}{1 + \frac{5}{x}} = x$	A1	Simplified numerical powers	
	$x^2 - 5x + 6 = 0$	M1	M1dep obtain a three term quadratic. Allow errors in signs and coefficients but not powers	
	(x-3)(x-2)=0	M1	Solve a three term quadratic	
	x = 3 or 2 only	A1		
3	Correctly obtain a value of $x = 2$	B1	Inequality not required	
	Correctly obtain a value of $x = -\frac{1}{2}$	B1	Inequality not required	
	$x > 2$ and $x < -\frac{1}{2}$	B1	B1dep mark final answer(s). Allow $2 < x < -\frac{1}{2}$	

0606/22	Cambridge IGCSE – Mark Scheme PUBLISHEDOctober/IMun Mun Mun MarksAnswerMarksPartial Marks $x+4=y^2$ B1		
Question	Answer	Marks	Partial Marks
4	$x + 4 = y^2$	B1	
	7y - x = 16 $7y - 16 + 4 = y^2$	B1	allow 2 ⁴ for 16
	$y^{2} - 7y + 12 \rightarrow (y - 3)(y - 4)(= 0)$ or $x^{2} - 17x + 60 \rightarrow (x - 5)(x - 12)(= 0)$	M1	Attempt to eliminate x or y to obtain a three term quadratic.
	Solve a three term quadratic	M1	M1dep
	$\rightarrow y = 3, x = 5 \text{ or } y = 4 x = 12$	A1	Allow for values seen even if correct pairs not clear.
5(i)	$^{10}C_4 = 210$	B1	
5(ii)	2 Mystery 2 others = ${}^{5}C_{2} \times {}^{5}C_{2} = 100$ 3 Mystery 1 other = ${}^{5}C_{3} \times {}^{5}C_{1} = 50$ 4 Mystery = ${}^{5}C_{4} = 5$ Total 155	B3	 B1 for one combination, unsimplified B1 for second combination, unsimplified B1 for third combination, unsimplified and total
	Alternative Method		
	All – 0 Mystery – 1 Mystery	B1	All minus 0 or 1 or both
	$= 210 - {}^{5}C_{4} - {}^{5}C_{1} \times {}^{5}C_{3}$	B1	B1dep 1Mystery and 0 mystery unsimplified
	$=210-5-5\times10=155$	B1	B1dep final answer
5(iii)	$2M1C1R = {}^{5}C_{2} \times {}^{3}C_{1} \times {}^{2}C_{1} = 60$ $1M2C1R = {}^{5}C_{1} \times {}^{3}C_{2} \times {}^{2}C_{1} = 30$ $1M1C2R = {}^{5}C_{1} \times {}^{3}C_{1} \times {}^{2}C_{2}$ = 15 Total 105	B3	 B1 for one combination, unsimplified B1 for second combination, unsimplified B1 for third combination, unsimplified and total
6(i)	$\pi x^2 h = 500 \rightarrow h = \frac{500}{\pi x^2}$	B1	Ignore units Condone r for x
6(ii)	$A = 2\pi x^2 + 2\pi x h$	M1	Correct expression for <i>A</i> and insert for <i>their h</i> .
	$= 2\pi x^{2} + 2\pi x \times \frac{500}{\pi x^{2}} = 2\pi x^{2} + \frac{1000}{x}$	A1	Answer given Condone r for x .

0606/22	Cambridge IGCSE – Ma PUBLISHED	rk Scheme	Octobern Mymains Partial Marks	AS ERS
Question	Answer	Marks	Partial Marks	HOUD
6(iii)	Differentiate: at least one power reduced by 1	M1		·COM
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 4\pi x - \frac{1000}{x^2}$	A1		
	$\frac{\mathrm{d}A}{\mathrm{d}x} = 0 \longrightarrow x = \sqrt[3]{\frac{1000}{4\pi}} \text{ isw } \operatorname{or}\left(x = 4.3(0)\right)$	A1		
	$A = 2\pi (4.3)^2 + \frac{1000}{4.3} = 349 \mathrm{cm}^2$	A1	awrt 349	
	$\frac{d^2 A}{dx^2} = 4\pi + \frac{2000}{x^3} (>0) \text{ or a positive value}$ (\rightarrow min)	B1	Correct second differential (need not be evaluated) and conclusion. or Examine correct gradient either side of $x = 4.3$ and conclusion	
7(i)	(Gradient or $\frac{dy}{dx}$) = $\frac{3x-1}{\sqrt{x}}$	B1	Gradient = Negative reciprocal. Can be implied.	
	$=3x^{\frac{1}{2}}-x^{-\frac{1}{2}}$	B1	± One correct term	
	$y = 2x^{\frac{3}{2}} - 2x^{\frac{1}{2}}(+C)$	M1	at least 1 fractional power increased by1.	
	$-10 = 2 - 2 + C \rightarrow C = -10$	A1	one term correct with simplified coefficients	
	$y = 2x^{\frac{3}{2}} - 2x^{\frac{1}{2}} - 10$	A1	For <i>C</i> from correct working.	
7(ii)	$x = 4 \rightarrow y = 16 - 4 - 10 = 2$	B1		
	$\rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 6 - \frac{1}{2} = 5.5$	B1		
	Eqn with <i>their</i> grad and point (4,)	M1		
	Eqn of tangent: $\frac{y-2}{x-4} = 5.5 \rightarrow y = 5.5x - 20$ oe	A1	Must be in the form $y = mx + c$ but accept $2y = 11x - 40$	
8(i)	$2\mathbf{A} = \begin{pmatrix} 4 & 2 \\ 8 & 6 \end{pmatrix}$	B1		
	$(2\mathbf{A})^{-1} = \frac{1}{8} \begin{pmatrix} 6 & -2 \\ -8 & 4 \end{pmatrix}$	B2	B1 for $\begin{pmatrix} 6 & -2 \\ -8 & 4 \end{pmatrix}$	
			B1 for $\frac{1}{8}$	

0606/22	Cambridge IGCSE – Mark Scheme PUBLISHEDOctober/IMarksMarksPartial Marks $4x + 2y = -5$ B1 $8x + 6x = 0$ B1			S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.S.
Question	Answer	Marks	Partial Marks	Y
8(ii)	4x + 2y = -5 $8x + 6y = -9$	B1		COM
	Pre multiply $\begin{pmatrix} -5\\ -9 \end{pmatrix}$ by a 2×2 matrix.	M1	Allow recovery	
	$\binom{x}{y} = \frac{1}{8} \binom{6}{-8} \binom{-2}{-9} \binom{-5}{-9}$	M1	Pre multiply <i>their</i> $\begin{pmatrix} -5 \\ -9 \end{pmatrix}$ by <i>their</i> answer to (i)	
	$\binom{x}{y} = \frac{1}{8} \binom{-12}{4} = \binom{-1.5}{0.5}$	A2	A1 for x value A1 for y value oe Allow both unsimplified	
9(i)	$\frac{\mathrm{d}}{\mathrm{d}x}(x\mathrm{ln}x) = x \times \frac{1}{x} + \mathrm{ln}x \text{ isw}$	M1A1	Product rule. One correct term + another term. Allow unsimplified.	
9(ii)	$\int 1 + \ln x dx = x \ln x$	M1	Correct use of (i) and must be dealing with 2 terms. soi	
	$\int \ln x dx = x \ln x - x + (C)$	A1	Correct answer with no working is fine.	
9(iii)	$\int_{k}^{2k} \ln x dx = [2k \ln 2k - 2k] - [k \ln k - k]$ $= k(2\ln 2k - \ln k - 1)$	M1	Insert limits and subtract correctly using <i>their</i> result from (ii) which must contain an ln function	
	$=k\left(\ln\left(2k\right)^2-\ln k-1\right)$	M1	Uses $n \ln a = \ln a^n$ somewhere oe	
	$=k\left(\ln\left(\frac{4k^2}{k}\right)-1\right)$	M1	Uses $\ln a - \ln b = \ln \left(\frac{a}{b}\right)$ or $\ln a + \ln b = \ln ab$ somewhere	
	$=k(\ln 4k-1)$	A1	Answer given Correct completion.	

Cambridge IGCSE – Mark Scheme PUBLISHED

0606/22	Cambridge IGCSE – Mark Scheme PUBLISHEDOctober/1Mun Mun		
Question	Answer	Marks	Partial Marks
10(i)	$c = 1 \rightarrow 6(1)^3 - 7(1)^2 + 1 = 0 \rightarrow (c-1)$ is a factor.	B1	Or correct division. Finding or using one correct factor.
	Attempt to factorise or use long division to obtain $6c^2 \dots \pm 1$ or $6c^2 \pm c \dots$ respectively	M1	
	$(c-1)(6c^2-c-1)=0$	A1	
	(c-1)(2c-1)(3c+1)=0	A1	
	$c = 1, \frac{1}{2}, -\frac{1}{3}$	A1	FT From three different linear factors
10(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x + 6\cos x$	B2	B1 for each term
10(iii)	$\frac{1}{\cos^2 x} + 6\cos x = 7$	B1	B1dep Replaces $\sec^2 x$ by $\frac{1}{\cos^2 x}$
	$\rightarrow 6\cos^3 x - 7\cos^2 x + 1 = 0$	B1	B1dep Answer given so all steps must be correct.
10(iv)	$cosx = 1, \frac{1}{2}, -\frac{1}{3}.$ → $x = 0, 1.05 \left(\text{or } \frac{\pi}{3} \right), 1.91$	A2	A1 for 2 values awrt A1 for third value and no others in range. No credit for answers in degrees
11(i)	$y = 0 \rightarrow (x - 4)(x + 1) = 0$	M1	Solve
	$\rightarrow A ext{ is}(4,0) ext{ nfww}$	A1	Indication somewhere that $x = 4$ when $y = 0$
11(ii)	$4+3x-x^{2} = mx+8x^{2} + (m-3)x + 4 = 0$	M1	Eliminate y.
	$b^2 - 4ac(=0) \rightarrow (m-3)^2 = 16$	M1	M1dep Use of discriminant
	m = -1	A1	Do not award if $m = 7$ is not discarded
11(iii)	Obtain quadratic $x^2 + (m-3)x + 4 = 0$ using <i>their m</i> and attempt to solve.	M1	Working must be seen for any marks to be awarded. Must not be awarded if <i>m</i> is not obtained correctly
	Point <i>B</i> (2, 6)	A1	

0606/22	Cambridge IGCSE – Mark Scheme PUBLISHEDOctober/hMuw.mum.mum.mum.mum.mum.mum.mum.mum.mum.m		
Question	Answer	Marks	Partial Marks
11(iv)	Area under curve $= \int_{2}^{4} (4 + 3x - x^{2}) dx$ Integrate powers increased in at least 2 terms	M1	Com
	$= \left[4x + \frac{3}{2}x^2 - \frac{1}{3}x^3 \right]_2^4$	A1	
	$= \left[16 + 24 - \frac{64}{3} \right] - \left[8 + 6 - \frac{8}{3} \right]$ $= 7\frac{1}{3}$	M1	M1dep Insert limits of <i>their</i> 2 and 4 and subtract in correct order. May be implied by $18\frac{2}{3}$
	Intercept is (8,0) so area of triangle = $\frac{6 \times 6}{2} = 18$	M1	Area of triangle using their $B = \frac{(their 8 - x_B)}{2} \times y_B$ or Attempt to find other suitable areas to result in a complete method.
	Shaded area = $18 - 7\frac{1}{3} = 10\frac{2}{3}$	A1	Accept 10.7. Must not be awarded if point B is not obtained correctly.