

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS Paper 2 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Cambridge IGCSE – Mark Scheme PUBLISHED

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 7

Cambridge IGCSE – Mark Scheme **PUBLISHED**

0606/21	Cambridge IGCSE – Mark Scheme PUBLISHED Answer Marks Guidance $x^2 - 6x - 7(>0)$ B1		
Question	Answer	Marks	Guidance
1	$x^2 - 6x - 7(>0)$	B1	COM
	(x-7)(x+1)(>0)	M1	
	Critical values 7 and -1	A1	
	x > 7 or x < -1	A1	
2	$\frac{(1+\sin\theta)-(1-\sin\theta)}{(1-\sin\theta)(1+\sin\theta)}$	M1	Dealing with fractions
	$=\frac{2\sin\theta}{\left(1-\sin^2\theta\right)}$	A1	Simplification
	$=\frac{2\sin\theta}{\cos^2\theta}$	M1	Use of identity (seen anywhere)
	$=2\tan\theta\sec\theta$	M1	Use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$ and $\sec \theta = \frac{1}{\cos \theta}$ (seen anywhere)
3	$2 = \log_5 25$	B1	
	$\log_5 25 + \log_5 (x - 7) = \log_5 25 (x - 7)$ $10x + 5 = 25(x - 7)$	M1	
	180 = 15x	M1	Equate, clear brackets and collect terms.
	12 = x	A1	

0606/21	Cambridge I P	GCSE – Ma PUBLISHED	Guidance Cloud contains cloud contains
Question	Answer	Marks	Guidance
4	$x - 2\left(4 - \sqrt{3}x\right) = 5\sqrt{3}$	M1	Eliminate y
	$x = \frac{5\sqrt{3} + 8}{2\sqrt{3} + 1}$	A1	
	$x = \frac{\left(5\sqrt{3} + 8\right)\left(2\sqrt{3} - 1\right)}{\left(2\sqrt{3} + 1\right)\left(2\sqrt{3} - 1\right)}$	M1	Multiply by $(a\sqrt{b}+c)$ as appropriate
	$x = 2 + \sqrt{3}$	A1	
	$y = 1 - 2\sqrt{3}$	A1	
	Alternative method		
	$\sqrt{3}\left(5\sqrt{3}+2y\right)+y=4$	M1	Eliminate x
	$y = \frac{-11}{\left(2\sqrt{3} + 1\right)}$	A1	
	$y = \frac{-11(2\sqrt{3} - 1)}{(2\sqrt{3} + 1)(2\sqrt{3} - 1)}$	M1	Multiply by $(a\sqrt{b}+c)$ as appropriate
	$y = 1 - 2\sqrt{3}$	A1	
	$x = 2 + \sqrt{3}$	A1	
5(i)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{5}{3x+2} \right) = -5(3x+2)^{-2} \times 3$	M1	$-5(3x+2)^{-2}$
		A1	×3
5(ii)	$\int \frac{30}{(3x+2)^2} \mathrm{d}x = \left[\frac{-10}{(3x+2)} \right]$	M1	$\frac{1}{(3x+2)}$
		A1	×-10
5(iii)	$\left[\frac{-10}{(3x+2)} \right]_{1}^{2} = -\frac{10}{8} + \frac{10}{5}$	M1	Insert limits and subtract
	$=\frac{3}{4}$	A1	
6(i)	2q + 3p = 13	B1	

0606/21	Cambridge IGCSE – Mark Scheme PUBLISHED Answer Multiply matrices correctly M1 October/ Munnatrisciford Multiply matrices correctly M1		
Question	Answer	Marks	Guidance
6(ii)	Multiply matrices correctly	M1	Con
	2p + pq = 12	A1	
6(iii)	4p + p(13 - 3p) = 24	M1	Eliminate q
	$3p^2 - 17p + 24 = 0$	A1	
	(3p-8)(p-3)=0	M1	Solve
	p = 3, q = 2	A1	
7	$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - \frac{1}{x^2}(+C)$	B2	B1 for $3x^2$
	dx x^2		B1 for $-\frac{1}{x^2}$.
	$x=1, \frac{\mathrm{d}y}{\mathrm{d}x}=1 \to C=-1$	B1	
	$y = x^3 + \frac{1}{x} - x + D$	B2	B1 for two correct terms in x
	$x = 1, \ y = 3 \rightarrow D = 2$		
	$y = x^3 + \frac{1}{x} - x + 2$	B1	
8	$z^{2} = a^{2} + 3(a+3)^{2} + 2a(a+3)\sqrt{3}$ $= 79 + b\sqrt{3}$	M1	
	$a^2 + 3(a+3)^2 = 79$ and $2a(a+3) = b$	A1	FT Equate correctly to obtain both eqns
	$a^{2} + 3a^{2} + 18a + 27 = 79$ $4a^{2} + 18a - 52 = 0$	M1	Expand and simplify to obtain 3 term quadratic
	(a-2)(4a+26)=0	M1	
	a=2, b=20	A2	A1 for each
9(i)	$1 + 4x + 6x^2 + 4x^3 + x^4$	B1	
9(ii)	$1296 - 864x + 216x^2 - 24x^3 + x^4$	B2	Minus 1 each error.
9(iii)	$1295 - 868x + 210x^2 - 28x^3 = 175$	M1	Subtract and equate to 1
	$28x^3 - 210x^2 + 868x - 1120 = 0$	A1	

Cambridge IGCSE – Mark Scheme **PUBLISHED**

0606/21	Cambridge IGCSE – Mark Scheme PUBLISHED Answer Marks Guidance $28(2)^3 - 210(2)^2 + 868(2) - 1120$ M1 Inserts $x = 2$			31/15
Question	Answer	Marks	Guidance	DUA
9(iv)	$28(2)^3 - 210(2)^2 + 868(2) - 1120$	M1	Inserts $x = 2$	CON
	= 224 - 840 + 1736 - 1120 = 0 (x-2) is a factor	A1		
	$(x-2)(28x^2-154x+560)$	M1A1	M1 for 28 and 560 seen oe A1 for -154	
	$b^2 - 4ac < 0 \text{ shown}$	B1		
10(i)	$\mathbf{r}_A = (2\mathbf{i} + 4\mathbf{j}) + t(\mathbf{i} + \mathbf{j})$	B1		
10(ii)	$\mathbf{r}_{B} = (10\mathbf{i} + 14\mathbf{j}) + t(-2\mathbf{i} - 3\mathbf{j})$	B1		
10(iii)	$\mathbf{r}_{B} - \mathbf{r}_{A} = (8\mathbf{i} + 10\mathbf{j}) + t(-3\mathbf{i} - 4\mathbf{j})$	M1		
	$X^{2} = (8-3t)^{2} + (10-4t)^{2}$	M1A1		
10(iv)	Differentiate	M1		
	$\frac{dX^2}{dt} = 2(8-3t)(-3) + 2(10-4t)(-4)$ oe	A1		
	$\frac{\mathrm{d}X^2}{\mathrm{d}t} = 0 \to t = 2.56$ $\to X = 0.4$	B2	B1 for value of t B1 for value of X .	_
11(i)	$x^2 - 2x + (kx + 3)^2 = 8$	M1	Eliminate <i>y</i>	
	$(1+k^2)x^2 + (6k-2)x + 1 = 0$	A1		
	$b^2 - 4ac = 0 \rightarrow (6k - 2)^2 - 4(1 + k^2) = 0$	M1		
	$k = \frac{3}{4}$	A1	Answer given	
11(ii)	$x = \frac{-b}{2a} \to x = \frac{-2.5}{2 \times 1.5625}$	M1		
1	=-0.8	A1		
	$y = 0.75 \times -0.8 + 3 = 2.4$	A1	FT	

Cambridge IGCSE – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
11(iii)	Eqn of PQ $\frac{y-2.4}{x+0.8} = \frac{-4}{3}$	M1	
	$\rightarrow 3y = 4 - 4x$	A1	
12(i)	$\frac{\mathrm{d}(\cos x)^{-1}}{\mathrm{d}x} = \frac{1}{\cos^2 x} \times \sin x$	M1	$\frac{1}{\cos^2 x}$
		A1	×sinx
12(ii)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \sec^2 x + \frac{4\sin x}{\cos^2 x}$	B1	$\sec^2 x$
		B1	$\frac{4\sin x}{\cos^2 x}$
12(iii)	$\frac{1}{\cos^2 x} + \frac{4}{\cos x} \times \frac{\sin x}{\cos x} = 4$	M1	Equate <i>their</i> (i) to 4 and multiply by $\cos^2 x$
	$\rightarrow 1 + 4\sin x = 4\cos^2 x$	M1	Use of identity and simplify
	$4\sin^2 x + 4\sin x - 3 = 0$	A1	
	$(2\sin x - 1)(2\sin x + 3) = 0$	M1	Solve
	$x = \frac{\pi}{6}, \ \frac{5\pi}{6}$	A2	A1 for each