

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS

0606/12 October/November 2016

www.mymathscloud.com

Paper 1 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

International Examinations

		mm m
Page 2	2 Mark Scheme	Syllabus P. The State
	Cambridge IGCSE – October/November 2016	0606 12 47, 75
Abbrevi	ations	Syllabus P. Mainschoud. 0606 12 Cloud.com
awrt cao	answers which round to correct answer only	0.

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

Question	Answer	Marks	Part Marks
1 (a) (i)	10	B1	
(ii)	22	B 1	
(iii)	4	B1	
(b) (i)	$Q \subset R$	B1	
(ii)	$P \cap Q = \emptyset$, or $\{\}$	B1	
2	a=1, b=-3, c=-1	B3	B1 for each
3	$3y^2 + 5y - 2 = 0$	B1 , B1	B1 for $5y$ or $5\log_3 x$, B1 for -2
	$3y^{2} + 5y - 2 = 0$ $y = \frac{1}{3}, y = -2$	M1	for correct attempt at the solution of <i>their</i> quadratic equation
	$x = 3^{\frac{1}{3}}, x = 3^{-2}$ x = 1.44, x = $\frac{1}{9}$	M1	for dealing with one base 3 logarithm correctly
	$x = 1.44, \ x = \frac{1}{9}$	A1, A1	A1 for each
4 (i)	$32x^{10} - \frac{80}{3}x^7 + \frac{80}{9}x^4$	B3	B1 for each term, powers of <i>x</i> must be simplified
(ii)	Coefficients needed:		
	$\left(3 \times their - \frac{80}{3}\right) + (1 \times their 32)$	M1	for dealing with 2 terms
	= -48	A1	Allow A1 for $-48x^7$

			2016 Syllabus P. M. H. H. S. Cloud Constraints Cloud Cloud Constraints Cloud Cloud Cloud Constraints Cloud C
Page 3			Syllabus P. May
	Cambridge IGCSE – October/N	2016 0606 12 13 5 5	
Question	Answer	Marks	Part Marks
5 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2(3x+2)}$	B1	for correct derivative of log function
	When $x = -\frac{1}{3}$, $y = 0$, $\frac{dy}{dx} = \frac{3}{2}$	B1	for $y = 0$
	Equation of normal: $y = -\frac{2}{3}\left(x + \frac{1}{3}\right)$	M1 A1	M1 for attempt at a gradient of a perpendicular from differentiation and the equation of the normal
(ii)	$Q\left(0,-\frac{2}{9}\right)$ or $\left(0,0.22\right)$ or better	B1 ft	Follow through on <i>their c</i> from part (i)
	$R\left(0,\frac{1}{2}\ln 2\right)$ or $\left(0,0.35\right)$ or better	B1	
	Area of <i>PQR</i> $= \frac{1}{2} \left(\frac{1}{2} \ln 2 + \frac{2}{9} \right) \times \frac{1}{3}$		
	= 0.0948	B1	Allow 0.095
6 (a)	YX, XZ	B2	B2 for both with no extrasB1 for 1 correct with or without extrasB1 for both correct with extrasB0 for anything else
(b) (i)	$\frac{1}{18} \begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix}$	B1 , B1	B1 for $\frac{1}{18}$, B1 for $\begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix}$
(ii)	$\mathbf{C} = \mathbf{A}^{-1}\mathbf{B}$ $= \frac{1}{18} \begin{pmatrix} 7 & 1 \\ -4 & 2 \end{pmatrix} \begin{pmatrix} -4 & 2 \\ 10 & 4 \end{pmatrix}$	M1	for pre-multiplication
	$= \begin{pmatrix} -1 & 1 \\ 2 & 0 \end{pmatrix}$	A1, A1	A1 for any correct pair of elements, but must be from correct matrices

Page 4	Mark Scheme		Syllabus P. Tyn 243
	Cambridge IGCSE – October/N	lovember	2016 0606 12 9th
Question	Answer	Marks	2016 Syllabus P. Thy The Harks
7 (i)	$(0,\sqrt{3})$ or $(0,1.73)$ or better	B1	
(ii)	$\left(\frac{\pi}{6},2\right)$ or $\left(0.524,2\right)$ or better	B1 , B1	B1 for each
(iii)	$\cos\left(x-\frac{\pi}{6}\right)=0$	M1	for correct attempt to solve trigonometric equation
	$x = \frac{2\pi}{3}$ oe or 2.09 or better	A1	1
(iv)	$2\sin\left(x-\frac{\pi}{6}\right)$ (+c)	B1	
(v)	Area = $\left[2\sin\left(x-\frac{\pi}{6}\right)\right]_{0}^{2\pi}$	M1	for correct use of their limits, in radians, (π)
	= 2 + 1 = 3	A1	into $k\sin\left(x-\frac{\pi}{6}\right)$.
(i)	$47 - 24 = 12\theta$ $\theta = \frac{23}{12}$, so $\theta = 1.917$ or better	M1	for complete correct method to get θ =
	$\theta = 1.92$ to 2dp	A1	must have evidence of working to more than 2 dp, allow if 1.916 seen (truncated)
(ii)	$\sin\frac{\theta}{2} = \frac{\frac{CD}{2}}{12}$ CD = awrt 19.6 or 19.7	M1 A1	for a complete method, may use cosine rule to get <i>CD</i>
(iii)	Area of sector = awrt 138 Area of triangle AOB = awrt 67 or 68 Area of segment = awrt 70 or 71	B1 M1 M1	for sector area, allow unsimplified for a correct attempt at area for segment area (<i>their</i> sector area – <i>their</i>
	$AD \times AB$ + segment area = 425 leading to AD = awrt 18.1 or 18.0	M1 A1	triangle area) for complete method to find <i>AD</i> Allow A1 for 18
	Alternative method: Area of sector = awrt 138 Difference in length between BC (or AD) and OM where M is the midpoint of CD = 6.88, allow awrt 6.9	B1 M1	for sector area for attempt to find difference between parallel sides
	Remaining area consists of two trapezia each of width 9.85 and each of area 143.4	M1	for area of one trapezium $\frac{1}{2}(2BC-their\ 6.88) \times their\ 9.85$ oe
	$\frac{1}{2}(2BC - 6.88) \times 9.85 = 143.4 \text{ oe}$ leading to $4D$ = awrt 18.1 or 18.0	M1	for attempt to find either <i>BC</i> or <i>AD</i>

A1

leading to AD = awrt 18.1 or 18.0

Page 5	Mark Scheme Cambridge IGCSE – October/November 2		2016 Syllabus P. Thymains 2016 0606 12 Scioud Part Marks	
Question	Answer	Marks	Part Marks	
9 (i)	$p\left(\frac{3}{2}\right): \frac{27a}{8} - \left(4 \times \frac{9}{4}\right) + \frac{3b}{2} + 18 (=0)$	M1	for attempt at $p\left(\frac{3}{2}\right)$	
	$\mathbf{p}'\left(\frac{3}{2}\right) = \left(3a \times \frac{9}{4}\right) - \left(8 \times \frac{3}{2}\right) + b (=0)$	M1	for differentiation and attempt at $p'\left(\frac{3}{2}\right)$	
	leading to $9a + 4b + 24 = 0$ oe and $27a + 4b - 48 = 0$ oe	M1	for solution of simultaneous equations, to get either a or b	
	leading to $a = 4$, $b = -15$	A1	for both	
(ii)	$(x+2)(2x-3)^2$ oe	M1, A1	M1 for attempt at long division or factorisation	
(iii)	$(x+2)(2x-3)^2 = x+2$ x+2=0, x=-2	B1	Must be using $(x+2)$ correctly using part (ii) to get $x = -2$	
	$(2x-3)^2 = 1$ leading to $x = 1, x = 2$	M1 A1	for solution of the quadratic equation	
10 (a) (i)	$20U + \frac{1}{2}\left(U + \frac{U}{2}\right) 10 = 165$	M1	for realising that area under the graph is needed and attempt to find an area	
		DM1	for equating their area to 165 and attempt to solve	
	leading to $U = 6$	A1		
(ii)	Gradient of line: -0.3	M1, A1	M1 for use of the gradient, must be negative	
(b) (i)	27	B1		
(ii)	$t^{2} = 8 \ln 4$ t = 3.33 or better	M1 A1	for a correct attempt to solve $e^{\frac{t^2}{8}} = 4$	
(iii)	acceleration = $3\frac{2t}{8}e^{\frac{t^2}{8}}\left(e^{\frac{t^2}{8}} - 4\right)^2$	M1, A1	M1 for a correct attempt to differentiate using the chain rule	
	When $t = 1$, $a = 6.98$	M1, A1	M1 for use of $t = 1$ in their acceleration	

Mark Scheme Cambridge IGCSE – October/November 2016

Page 6	Mark Scheme Cambridge IGCSE – October/November 2016		Syllabus P. 2016 0606 12 Part Marks
Question	Answer	Marks	Part Marks
1 (i)	$\ln y = \ln A + x \ln b$	B1	may be implied, il equation not been
	Gradient: $\ln b = -\frac{0.12}{8}$, $= -0.015$	M1	specifically, by correct values for A and b for use of gradient to obtain $\ln b$
	b = 0.985	A1	Allow A1 for $e^{-0.015}$
	Intercept: $\ln A = 0.26$	DM1	for use of one of the given points correctly
	<i>A</i> = 1.30	A1	Allow A1 for $e^{0.26}$ or 1.3
	Alternative 1		
	$\ln y = \ln A + x \ln b$	B1	
	$0.2 = 4 \ln b + \ln A$	M1	for one correct equation
	$0.08 = 12\ln b + \ln A$	DM1	for attempt to obtain either $\ln A$ or $\ln b$ from simultaneous equations
	A = 1.30 and $b = 0.985$	A1, A1	Allow A1 for $b = e^{-0.015}$ and $a = e^{0.26}$ or 1.3
	Alternative 2		
	$1.22 = Ab^4$	B1	
	$1.08 = Ab^{12}$	B1	
		M1	for correct attempt to obtain b or A , must already have B2
	A = 1.30 and $b = 0.985$	A1, A1	Allow A1 for $b = e^{-0.015}$ and $a = e^{0.26}$ or 1.3
(ii)	When $x = 6$, $\ln y = 0.17$	M1	for $\ln y = their \ln A + 6 their \ln b$ or
			$y = their A \times (their b)^6$
	<i>y</i> = 1.19	A1	allow awrt 1.18 to 1.20
(iii)	When $y = 1.1$, $\ln y = 0.095$	M1	for $\ln 1.1 = their \ln A + x their \ln b$ or
			$1.1 = theirA \times (theirb)^{x}$
	<i>x</i> = 11	A1	allow 10.5 to 11.5