MARK SCHEME for the October/November 2015 series

0606 ADDITIONAL MATHEMATICS

www.mymathscloud.com

0606/13

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

Page 2			_	Syllabus	P. Mar
	Cambridge IGCSE – Oc	tober/November 20	15	0606	13 th
Abbrevi	ations				104
Awrt	answers which round to				MMW. My Maser P- 13 13
Cao	correct answer only				
dep FT	dependent follow through after error				
r I isw	ignore subsequent working				
oe	or equivalent				
rot	rounded or truncated				
SC	Special Case				
soi	seen or implied				
WWW	without wrong working				
(i)					
(i)		B1			
(ii)		B1			

Γ

		B1	
(ii)		B1	
(iii)		B1	
2	$\cos\left(3x - \frac{\pi}{4}\right) = (\pm)\frac{1}{\sqrt{2}}$ oe	M1	division by 2 and square root
	$3x - \frac{\pi}{4} = -\frac{\pi}{4}, \ \frac{\pi}{4}, \ \frac{3\pi}{4}$		
	$x = \left(-\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \left(\frac{\pi}{4} + \frac{\pi}{4}\right) \div 3, \left(\frac{3\pi}{4} + \frac{\pi}{4}\right) \div 3 \text{ oe}$	DM1	correct order of operations in order to obtain a solution
	$x = 0$ and $\frac{\pi}{6}$ (or 0 and 0.524)	A2/1/0	A2 for 3 solutions and no extras in the range A1 for 2 solutions
	$x = \frac{\pi}{3}$ (or 1.05)		A0 for one solution or no solutions

Page 3	Mark Scheme	Novomber 20	Syllabus P. 377 15 0606 13
	Cambridge IGCSE – October/	November 20	15 0606 13 7 ₅ ch
(a)	$\begin{pmatrix} 12 & 16 & 4 \\ 30 & 32 & 10 \end{pmatrix}$	B2,1,0	B2 for 6 elements correct, B1for 5 elements correct
(b)	$ \begin{pmatrix} 28 & -24 \\ -8 & 76 \end{pmatrix} = m \begin{pmatrix} 4 & 6 \\ 2 & -8 \end{pmatrix} + n \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $	B2,1,0	B2 for 4 correct elements in X^2 B1 for 3 correct elements in X^2
	-24 = 6m or $-8 = 2m$ giving $m = -4$	B1	For $m = -4$ using correct I
	28 = 4m + n or $76 = -8m + nn = 44$	M1 A1	complete method to obtain <i>n</i>
(c)	$a^2 - 6 = 0$ so $a = \pm \sqrt{6}$	B2,1,0	B2 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$, with no incorrect statements seen or B1 for $a = \pm \sqrt{6}$ or $a = \pm 2.45$ seen or B1 for $a = \sqrt{6}$ and no incorrect working
(i)	$\frac{1}{2}(4\sqrt{3}+1) \times BC = \frac{47}{2}$	B1	correct use of the area
	$\frac{1}{2} (4\sqrt{3} + 1) \times BC = \frac{47}{2}$ $BC = \frac{47}{(4\sqrt{3} + 1)} \times \frac{(4\sqrt{3} - 1)}{(4\sqrt{3} - 1)}$ $BC = 4\sqrt{3} - 1$	M1 A1	correct rationalisation Dependent on all method being seen
	Alternative method		
	$\frac{1}{2}\left(4\sqrt{3}+1\right) \times BC = \frac{47}{2}$ $\left(4\sqrt{3}+1\right)\left(a\sqrt{3}+b\right) = 47$	B1	
	Leading to $12a + b = 47$ and $a + 4b = 0$ Solution of simultaneous equations	M1	
	$BC = 4\sqrt{3-1}$	A1	Dependent on all method seen including solution of simultaneous equations
(ii)	$ (4\sqrt{3}+1)^2 + (4\sqrt{3}-1)^2 $ = $(48+8\sqrt{3}+1) + (48-8\sqrt{3}+1)$		
	$= \left(48 + 8\sqrt{3} + 1\right) + \left(48 - 8\sqrt{3} + 1\right)$	B1FT	6 correct FT terms seen
	$AC^2 = 98$ $AC = 7\sqrt{2} \text{ or } p = 7$	B1cao	98 and $7\sqrt{2}$ or 98 and $p = 7$

				mm 14
[Page 4	Mark Scheme		Syllabus P. Mar
		Cambridge IGCSE – October/Nove	ember 20	15 0606 13 ths
5		When $x = \frac{\pi}{4}$, $y = 2$ $\frac{dy}{dx} = 5\sec^2 x$	B1 B1	$\begin{array}{c c} & & & & & & \\ \hline & & & & \\ \hline \hline & & & \\ \hline 15 & & & \\ \hline & & & \\ \hline y = 2 \\ & & \\ 5 \sec^2 x \end{array}$
		dx When $x = \frac{\pi}{4}$, $\frac{dy}{dx} = 10$	B1	10 from differentiation
		Equation of normal $y - 2 = -\frac{1}{10} \left(x - \frac{\pi}{4} \right)$	M1	$y - their 2 = -\frac{1}{their 10} \left(x - \frac{\pi}{4} \right)$
		$10y + x - 20 - \frac{\pi}{4} = 0$ or $10y + x - 20.8 = 0$ oe	A1	allow unsimplified
6	(i)	-4 -2 2 4 6 8	B1 B1 B1	shape intercepts on <i>x</i> -axis intercept on <i>y</i> -axis for a curve with a maximum and two arms
	(ii)	(2,16)	M1 A1	(2, ±16) seen or (2, k) where $k > 0$ (2, 16) or $x = 2$ and $y = 16$ only
	(iii)	k = 0	B1	
		<i>k</i> >16	B1	

				mun m
	Page 5	Mark Scheme		Syllabus P. Una Var
		Cambridge IGCSE – October/Nove	ember 20	15 0606 13 diffs is
7		$\frac{dy}{dx} = 2\sin 3x (+c)$	B1	Syllabus P. Numerican 15 0606 13 13 2sin 3x 2sin 3x 0000 0000 0000 0000
		$\frac{dy}{dx} = 2\sin 3x (+c)$ $4\sqrt{3} = 2\frac{\sqrt{3}}{2} + c$	M1	finding constant using $\frac{dy}{dx} = k \sin 3x + c \text{ making use of}$ $\frac{dy}{dx} = 4\sqrt{3} \text{ and } x = \frac{\pi}{9}$
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 2\sin 3x + 3\sqrt{3}$	A1	Allow with $c = 5.20 \text{ or } \sqrt{27}$
		$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x (+d)$	B1FT	FT integration of <i>their</i> $k \sin 3x$
		$-\frac{1}{3} = -\frac{2}{3}\cos\frac{\pi}{3} + 3\sqrt{3}\left(\frac{\pi}{9}\right) + d$	M1	finding constant <i>d</i> for $k \cos 3x + cx + d$
		$y = -\frac{2}{3}\cos 3x + 3\sqrt{3}x - \frac{\sqrt{3}}{3}\pi$	A1	Allow $y = -0.667 \cos 3x + 5.20x - 0.577\pi$ or better
8	(a)	$(2+kx)^8 = 256 + 1024kx + 1792k^2x^2 + 1792k^3x^3$		
		$k = \frac{1}{4}$	B1	
		p = 112 $q = 28$	B1FT B1FT	FT 1792 multiplied by <i>their</i> k^2 FT 1792 multiplied by <i>their</i> k^3
	(b)	${}^{9}C_{3}x^{6}\left(-\frac{2}{x^{2}}\right)^{3}$ $84x^{6}\left(-\frac{8}{x^{6}}\right)$ leading to	M1	correct term seen
		$84x^6\left(-\frac{8}{x^6}\right)$ leading to	DM1	Term selected and 2^3 and 9C_3 correctly
		-672	A1	evaluated

F	Page 6	Mark Scheme		Syllabus P. J. Syllabus
	aye u	Cambridge IGCSE – October/Nove	mber 20	15 0606 13 H
) ((a) (i)	Number of arrangements with Maths books as one item = $4!$ or $4 \times 3!$	M1	$\begin{array}{c c} & & & & & & & & \\ \hline & & & & & & \\ \hline & & & &$
		or Maths books can be arranged 2! ways and History 3! ways = $2! \times 3!$		$2! \times 3! (\times 4)$ or $2 \times 3! (\times 4)$ oe
		$2 \times 4! \text{ or } 2 \times 4 \times 3! \text{ or } 4 \times 2 \times 3! = 48$	A1	A1 for 48
	(ii)	$5! - 48 \text{ or } 6 \times 2 \times 3!$	M1	5! – <i>their</i> answer to (i) or for $6 \times 2 \times 3$
		72	A1	
((b) (i)	3003	B1	
	(ii)	3003 - 6 - 135	M1	<i>their</i> answer to (i) $-6^{-6}C_4 \times 9$
		2862	B1 A1	135 subtracted
		or 2M 3W = 720 3M 2W = 1260	M1	complete correct method using 4 cases, may be implied by working. Must have
		3M 2W = 1200 4M 1W = 756 5M = 126 2862	B1 A1	at least one correct any 3 correct

				mm m
	Page 7 Mark Scheme		Syllabus P. 473	
		Cambridge IGCSE – October/Nove	ember 20	015 0606 13 The s
10	(i)	$10^{2} = 6^{2} + 6^{2} - 2 \times 6 \times 6 \times \cos ABC$ or $sin\left(\frac{ABC}{2}\right) = \frac{5}{6}$ or $ABC = \pi - sin^{-1}\frac{10\sqrt{11}}{36}$	M1	$\frac{Syllabus}{O15} P. M. Rains cloud of the statement or correct statement for sin \frac{ABC}{2} or equating areas oe$
	(ii)	<i>ABC</i> = 1.9702 <i>XY</i> = 2	A1 B1	1.9702 or better for <i>XY</i> (may be implied by later work, allow on diagram)
		Arc length $6\left(\frac{\pi - 1.970}{2}\right)$ oe Perimeter = $2 + 2\left(6\left(\frac{\pi - 1.970}{2}\right)\right)$ = 9.03	B1 M1 A1	correct arc length (unsimplified) their $2 + 2 \times 6 \times$ their angle C
	(iii)	$\left(\frac{1}{2} \times 6^2 \left(\frac{\pi - 1.970}{2}\right) - \frac{1}{2} \times 5 \times \sqrt{11}\right) \times 2$ = 4.50 or 4.51 or better	M1 M1 A1	sector area using <i>their</i> C area of $\triangle ABM$ where M is the midpoint of AC, or ($\triangle s ABY$ and BXY) or $\triangle ABC$ Answers to 3sf or better

			mm n
Page 8	Mark Scheme		Syllabus P. 47
	Cambridge IGCSE – October/Nove	ember 20	15 0606 13 ⁴ / ₂ 73
11	$x^{2} - 2x - 3 = 0$ or $y^{2} - 6y + 5 = 0$	M1	Syllabus P. 15 0606 13 substitution and simplification to obtain a three term quadratic equation in one variable
	leading to (3, 5) and (-1, 1)	A1,A1	A1 for each 'pair' from a correct quadratic equation, correctly obtained.
	Midpoint (1, 3)	B1cao	midpoint
	(Gradient – 1) Perpendicular bisector $y = 4 - x$ Meets the curve again if $x^{2} + 10x - 15 = 0$ or $y^{2} - 18y + 41 = 0$	M1 M1	perpendicular bisector, must be using <i>their</i> perpendicular gradient and <i>their</i> midpoint substitution and simplification to obtain a three term quadratic equation in one variable.
	leading to $x = -5 \pm 2\sqrt{10}$, $y = 9 \mp 2\sqrt{10}$	A1,A1	A1 for each 'pair'
	$CD^{2} = (4\sqrt{10})^{2} + (4\sqrt{10})^{2}$	M1	Pythagoras using <i>their</i> coordinates from solution of second quadratic. $(x_1 - x_2)^2 + (y_1 - y_2)^2$ must be seen if not using correct coordinates.
	$CD = 8\sqrt{5}$	A1	A1 for $8\sqrt{5}$ from $\sqrt{320}$ and all correct so far.

				mm m
	Page 9 Mark Scheme			Syllabus P. Jnay
		Cambridge IGCSE – October/Nove	ember 20	15 0606 13 73 3
12	(a)	$2^{2x-1} \times 2^{2(x+y)} = 2^7$ and $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$	M1	$\begin{array}{c c} & & & & & & & & & & & & & & & & & & &$
		2x - 1 + 2(x + y) = 7 oe 2(2y - x) = 3(y - 4) oe leading to $x = 4$, $y = -4$	A1 A1 A1	Correct equation from correct working Correct equation from correct working for both
		Example of Alternative method Method mark as above 2x - 1 + 2(x + y) = 7	M1 A1	As before One of the correct equations in x and y
		leading to $y = \frac{(8-4x)}{2}$ Correctly substituted in $\frac{3^{2(2y-x)}}{3^{3(y-4)}} = 1$ Leading to $2\left(\frac{2(8-4x)}{2} - x\right) = 3\left(\frac{(8-4x)}{2} - 4\right)$ Leading to $x = 4$ and $y = -4$	A1 A1	Correct, unsimplified, equation in <i>x</i> or <i>y</i> only Both answers
	(b)	$(2(5^{z})-1)(5^{z}+1)=0$ leading to $2.5^{z}=1$ $(5^{z}=-1)$ $5^{z}=0.5$	M1 A1 DM1	solution of quadratic correct solution correct attempt to solve $2.5^z = k$, where
		$z = \frac{\log 0.5}{\log 5}$ or $z = -0.431$ or better	A1	correct attempt to solve $2.5 = k$, where k is positive must have one solution only