## MARK SCHEME for the October/November 2014 series

## 0606 ADDITIONAL MATHEMATICS

www.nymathscloud.com

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.



| Page 2  | Mark Scheme<br>Cambridge IGCSE – October/Noven                                       | Syllabus P. Unains<br>4 0606 11 ans |                                                                                                          |
|---------|--------------------------------------------------------------------------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------|
|         | $\frac{dy}{dx} = 2x - \frac{16}{x^2}$<br>When $\frac{dy}{dx} = 0$ ,                  | M1<br>A1<br>DM1                     |                                                                                                          |
|         | x = 2, y = 12                                                                        | A1                                  | A1 for both, but no extra solutions                                                                      |
| (a)     |                                                                                      | B1                                  | for correct shape                                                                                        |
|         |                                                                                      | B1                                  | for max value of 2, starting at $(0, 2)$<br>and finishing at $(180^{\circ}, 2)$                          |
|         |                                                                                      | <b>B</b> 1                          | for min value of –4                                                                                      |
| (b) (i) | 4                                                                                    | B1                                  | must be positive                                                                                         |
| (ii)    | $60^{\circ} \text{ or } \frac{\pi}{3} \text{ or } 1.05 \text{ rad}$                  | B1                                  |                                                                                                          |
| i) (i)  | $y = 4(x+3)^{\frac{1}{2}}(+c)$                                                       | M1, A1                              | <b>M1</b> for $(x+3)^{\frac{1}{2}}$ , <b>A1</b> for $4(x+3)^{\frac{1}{2}}$                               |
|         | $y = 4(x+3)^{\frac{1}{2}}(+c)$<br>$10 = 4\left(9^{\frac{1}{2}}\right) + c$<br>c = -2 | M1                                  | for a correct attempt to find <i>c</i> , but<br>must be from an attempt to<br>integrate                  |
|         | c = -2<br>$y = 4(x+3)^{\frac{1}{2}} - 2$<br>$6 = 4(x+3)^{\frac{1}{2}} - 2$           | A1                                  | Allow <b>A1</b> for $c = -2$                                                                             |
| (ii)    | $6 = 4(x+3)^{\frac{1}{2}} - 2$<br>x = 1                                              | A1 ft                               | <b>ft</b> for substitution into <i>their</i> equation to obtain <i>x</i> ; must have the first <b>M1</b> |

| Page 3 | Mark Scheme                                                  |                                         | Syllabus P. 473                                                                                                                                          |  |
|--------|--------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|        | Cambridge IGCSE – October/Nov                                | Cambridge IGCSE – October/November 2014 |                                                                                                                                                          |  |
| (i)    | $5y^2 - 7y + 2 = 0$                                          | B1, B1                                  | Syllabus     P. man       1     0606     11       B1 for 5, B1 for -7     1     1                                                                        |  |
| (ii)   | (5y-2)(y-1)=0                                                | M1                                      | for solution of quadratic equation from (i)                                                                                                              |  |
|        | $y = \frac{2}{5}, x = \frac{\ln 0.4}{\ln 5}$                 | M1                                      | for use of logarithms to solve<br>equation of the type $5^x = k$                                                                                         |  |
|        | x = -0.569                                                   | A1                                      | must be evaluated to 3sf or better                                                                                                                       |  |
|        | y = 1, x = 0                                                 | B1                                      |                                                                                                                                                          |  |
| (i)    | $\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 - \frac{1}{x}$       | M1                                      | for attempt to differentiate                                                                                                                             |  |
|        | When $x = 1$ , $y = 1$ and $\frac{dy}{dx} = 2$               | B1                                      | for $y = 1$                                                                                                                                              |  |
|        | Tangent: $y - 1 = 2(x - 1)$                                  | DM1                                     | for attempt to find equation of tangent                                                                                                                  |  |
|        | (y=2x-1)                                                     | A1                                      | allow equation unsimplified                                                                                                                              |  |
| (ii)   | Mid-point (5, 9)                                             | B1                                      | for midpoint from given coordinates                                                                                                                      |  |
|        | 9 = 2(5) - 1                                                 | B1                                      | for checking the mid-point lies on<br>tangent                                                                                                            |  |
|        | Alternative Method:<br>Tangent equation $y = 2x - 1$         |                                         |                                                                                                                                                          |  |
|        | Equation of line joining (-2, 16) and (12, 2)<br>y = -x + 14 |                                         |                                                                                                                                                          |  |
|        | Solve simultaneously $x = 5, y = 9$                          | B1                                      | for a complete method to find the coordinates of the point of                                                                                            |  |
|        | Mid-point (5, 9)                                             | B1                                      | intersection<br>for midpoint from given<br>coordinates                                                                                                   |  |
| (i)    | $(2+px)^6 = 64+192px+240p^2x^2\dots$                         | B1                                      | for 240 $p^2$ or 240 $p^2x^2$ or<br>${}^{6}C_2 \times 2^4 \times (px)^2$ or ${}^{6}C_2 \times 2^4 \times p^2$<br>or ${}^{6}C_2 \times 2^4 \times p^2x^2$ |  |
|        | $240p^2 = 60$                                                | M1                                      | for equating <i>their</i> term in $x^2$ to 60                                                                                                            |  |
|        | $p = \frac{1}{2}$                                            | A1                                      | and attempt to solve                                                                                                                                     |  |
| (ii)   | $(3-x)(64+192px+240p^2x^2)$                                  | B1 ft                                   | <b>ft</b> for 192 <i>p</i> , 96 or $192 \times their p$                                                                                                  |  |
|        | Coefficient of $x^2$ is $180-192p$<br>= 84                   | M1<br>A1                                | for 180 – 192 <i>p</i>                                                                                                                                   |  |

| Page 4 | Mark Scheme<br>Cambridge IGCSE – October/November 2014                                                                                        |             | Syllabus P. Unating<br>0606 11 115                                                                                     |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------------------------------------------------------|
| 7 (i)  | $\mathbf{A}^{-1} = \frac{1}{5ab} \begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$                                                             | B1, B1      | B1 for $\frac{1}{5ab}$ , B1 for $\begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$                                      |
| (ii)   | $\mathbf{X} = \mathbf{B}\mathbf{A}^{-1}$                                                                                                      | M1          | for post-multiplication by inverse matrix                                                                              |
|        | $= \begin{pmatrix} -a & b \\ 2a & 2b \end{pmatrix} \begin{pmatrix} \frac{1}{5a} & -\frac{2}{5a} \\ \frac{1}{5b} & \frac{3}{5b} \end{pmatrix}$ | DM1         | for correct attempt at matrix multiplication, needs at least one term correct for their $BA^{-1}$ (allow unsimplified) |
|        | $= \begin{pmatrix} 0 & 1\\ \frac{4}{5} & \frac{2}{5} \end{pmatrix}$                                                                           | A1<br>A1    | for each correct pair of elements,<br>must be simplified                                                               |
| 3 (i)  | $\overline{AB} = \begin{pmatrix} 12\\16 \end{pmatrix}, \text{ at } P, \ x = -2 + \frac{1}{4}(12)$<br>so at $P, \ x = 1$                       | B1          | for convincing argument for $x = 1$                                                                                    |
|        | $y = 3 + \frac{1}{4}(16), y = 7$                                                                                                              | <b>B</b> 1  | for $y = 7$                                                                                                            |
| (ii)   | Gradient of $AB = \frac{16}{12}$ , so perp gradient $= -\frac{3}{4}$                                                                          | M1          | for finding gradient of perpendicular                                                                                  |
|        | Perp line: $y - 7 = -\frac{3}{4}(x - 1)$                                                                                                      | M1          | for equation of perpendicular through their <i>P</i>                                                                   |
|        | (3x+4y=31)                                                                                                                                    | A1          | Allow unsimplified                                                                                                     |
| (iii)  | $Q\left(0,\frac{31}{4}\right)$                                                                                                                | B1 ft<br>M1 | <b>ft</b> on their perpendicular line, may<br>be implied<br>for any valid method of finding the                        |
|        | Area $AQB = 12.5$                                                                                                                             | A1          | area of the correct triangle, allow<br>use of <i>their</i> $Q$ ; must be in the form<br>(0,q).                         |

## Mark Scheme Cambridge IGCSE – October/November 2014

| Page 5 | Mark Scheme<br>Cambridge IGCSE – October/Nove                                                                                                                           | for the statement, may be seen or implied in later work. |                                                                                                                                                         |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9 (i)  | $\log y = \log a + x \log b$ x   2   2.5   3   3.5   4     lg y   1.27   1.47   1.67   1.87   2.07     2   2.5   3   3.5   4     lny   2.93   3.39   3.84   4.31   4.76 | B1                                                       | for the statement, may be seen or<br>implied in later work,                                                                                             |
|        | logy                                                                                                                                                                    | M1                                                       | for attempt to draw graph of $x$ against log $y$                                                                                                        |
|        |                                                                                                                                                                         | A2,1,0                                                   | -1 each error in points plotted                                                                                                                         |
| (ii)   | Gradient = $\log b$<br>$\lg b = 0.4$ or $\ln b = 0.92$<br>b = 2.5 (allow 2.4 to 2.6)                                                                                    | DM1                                                      | for attempt to find gradient and equate it to log <i>b</i> , dependent on <b>M1</b> in (i)                                                              |
|        | b = 2.5  (allow 2.4 to 2.6)<br>Intercept = log <i>a</i><br>lg <i>a</i> = 0.47 or ln <i>a</i> = 1.10                                                                     | A1<br>DM1                                                | for attempt to equate <i>y</i> -intercept to log <i>a</i> or use <i>their</i> equation with <i>their</i> gradient and a point on the                    |
|        | a = 3 (allow 2.8 to 3.2)                                                                                                                                                | A1                                                       | line, dependent on M1 in (i)                                                                                                                            |
|        | Alternative method:<br>Simultaneous equations may be used provided<br>points that are on the plotted straight line are<br>used.                                         | DM1<br>DM1                                               | for a pair of equations using points<br>on the line, dependent on <b>M1</b> in (i)<br>for solution of these equations,<br>dependent on <b>M1</b> in (i) |
|        | a = 3 (allow 2.8 to 3.2)<br>b = 2.5 (allow 2.4 to 2.6)                                                                                                                  | A1<br>A1                                                 | A1 for each                                                                                                                                             |

## Mark Scheme Cambridge IGCSE – October/November 2014

| Page 6                     | Mark Scheme<br>Cambridge IGCSE – October/November 2014                                                   |                | Syllabus P. Unathe                                                                                                                            |  |  |
|----------------------------|----------------------------------------------------------------------------------------------------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                            |                                                                                                          |                |                                                                                                                                               |  |  |
| 0 (a) (i)<br>(ii)<br>(iii) | 360<br>60<br>36                                                                                          | B1<br>B1<br>B1 | Syllabus P. Nyman<br>0606 11                                                                                                                  |  |  |
| (b) (i)                    | ${}^{8}C_{5} \times {}^{12}C_{5}$                                                                        | B1, B1         | <b>B1</b> for each, allow unevaluated with no extra terms                                                                                     |  |  |
|                            | 56×792 = 44352                                                                                           | B1             | Final answer must be evaluated and from multiplication                                                                                        |  |  |
| (ii)                       | 4 places are accounted for<br>Gender no longer 'important'                                               | M1             | for realising that 4 places are<br>accounted or that gender is no<br>longer important                                                         |  |  |
|                            | Need ${}^{16}C_6 = 8008$                                                                                 | A1             | for 8008                                                                                                                                      |  |  |
|                            | Alternative Method<br>$\binom{{}^{6}C_{6} \times {}^{10}C_{0}}{1+60+675+2400+3150+1512+210} = 8008$      | M1<br>A1       | for at least 5 of the 7 cases, allow unsimplified                                                                                             |  |  |
| 1 (a)                      | $2\cos 3x - \frac{\cos 3x}{\sin 3x} = 0$ $\cos 3x \left(2 - \frac{1}{\sin 3x}\right) = 0$                | M1             | for use of $\cot 3x = \frac{\cos 3x}{\sin 3x}$ , may be implied                                                                               |  |  |
|                            | Leading to $\cos 3x = 0$ , $3x = 90^{\circ}$ , $270^{\circ}$<br>$x = 30^{\circ}$ , $90^{\circ}$          | DM1<br>A1      | for attempt to solve $\cos 3x = 0$<br>correctly from correct factorisation<br>to obtain x<br>A1 for both, no excess solutions in<br>the range |  |  |
|                            | and $\sin 3x = \frac{1}{2}, \ 3x = 30^{\circ}, \ 150^{\circ}$                                            | DM1            | the range<br>for attempt to solve $\sin 3x = \frac{1}{2}$                                                                                     |  |  |
| (b)                        | $x = 10^{\circ}, 50^{\circ}$                                                                             | A1             | correctly to obtain <i>x</i><br>A1 for both, condone excess<br>solutions                                                                      |  |  |
|                            | $\cos\left(y + \frac{\pi}{2}\right) = -\frac{1}{2}$ $y + \frac{\pi}{2} = \frac{2\pi}{3}, \frac{4\pi}{3}$ | M1             | for dealing with $\sec\left(y+\frac{\pi}{2}\right)$                                                                                           |  |  |
|                            |                                                                                                          | DM1            | correctly<br>for correct order of operations,<br>must not mix degrees and radians                                                             |  |  |
|                            | so $y = \frac{\pi}{6}, \frac{5\pi}{6}$ (0.524, 2.62)                                                     | A1, A1         |                                                                                                                                               |  |  |

|        |                                         |          | Mun M   |
|--------|-----------------------------------------|----------|---------|
| Page 7 | Mark Scheme                             | Syllabus | Pinar   |
|        | Cambridge IGCSE – October/November 2014 | 0606     | 11 4ths |

| Page 7 | Mark Scheme<br>Cambridge IGCSE – October/No                                                                                                                       | Syllabus P. Ny. Nature   4 0606 11 |                                           |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------|
| 12 (i) | $\overrightarrow{AQ} = \lambda \mathbf{b} - \mathbf{a}$                                                                                                           | B1                                 | -ud.co.                                   |
| (ii)   | $\overrightarrow{BP} = \mu \mathbf{a} - \mathbf{b}$                                                                                                               | B1                                 |                                           |
| (iii)  | $\overrightarrow{OR} = \mathbf{a} + \frac{1}{3} (\lambda \mathbf{b} - \mathbf{a}) \text{ or } \lambda \mathbf{b} - \frac{2}{3} (\lambda \mathbf{b} - \mathbf{a})$ | M1                                 | for $\mathbf{a} + \frac{1}{3}$ their (i)  |
|        | $=\frac{2}{3}\mathbf{a}+\frac{1}{3}\lambda\mathbf{b}$                                                                                                             | A1                                 | Allow unsimplified                        |
| (iv)   | $\overrightarrow{OR} = \mathbf{b} + \frac{7}{8} (\mu \mathbf{a} - \mathbf{b}) \text{ or } \mu \mathbf{a} - \frac{1}{8} (\mu \mathbf{a} - \mathbf{b})$             | M1                                 | for $\mathbf{b} + \frac{7}{8}$ their (ii) |
|        | $=\frac{1}{8}\mathbf{b}+\frac{7}{8}\mu\mathbf{a}$                                                                                                                 | A1                                 | Allow unsimplified                        |
| (v)    | $\frac{2}{3}\mathbf{a} + \frac{1}{3}\lambda\mathbf{b} = \frac{1}{8}\mathbf{b} + \frac{7}{8}\mu\mathbf{a}$                                                         | M1                                 | for equating (iii) and (iv) and then      |
|        | $\frac{2}{3} = \frac{7}{8}\mu, \mu = \frac{16}{21}$ Allow 0.762                                                                                                   | A1                                 | equating like vectors                     |
|        | $\frac{1}{3}\lambda = \frac{1}{8}, \lambda = \frac{3}{8}$ Allow 0.375                                                                                             | A1                                 |                                           |