CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.mymathscioud.com MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		h	24	
Page 2	Mark Scheme	Syllabus	· m.	1
_	IGCSE – October/November 2013	0606	TUN	4

Mark Scheme Notes

Marks are of the following three types:

- nathscioud.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2. 1. 0 means that the candidate can earn anything from 0 to 2.

					Mun 1
	Page 3	3	Mark Scheme		Syllabus 5. 2
		IGCSE – October/November 2013		r 2013	0606
				-	ATA SS
1		(x+6)	(x-1)	M1	Attempt to solve a three term quadratic
		Critica	l values –6 and 1	A1	L'ANDER OF CONTRACTOR
		-6 < x	<1	A1 [3]	Syllabus 0606Mu Mu Mu
2		$(4\sqrt{5} -$	$(2)^2 = 80 - 16\sqrt{5} + 4$	M1	Attempt to expand, allow one error,
		Multip	ly top and bottom by $\sqrt{5+1}$	M1	must be in the form $a + b\sqrt{5}$. Must be attempt to expand top and bottom.
		17√5+	-1	A1 A1 [4]	Allow A1 for $\frac{68\sqrt{5}+4}{c}$
		OR $(4\sqrt{5} - (\sqrt{5} - 1))$	$(2)^{2} = 80 - 16\sqrt{5+4}$ $(p\sqrt{5}+q) = 5p - q + \sqrt{5(q-p)}$	M1	
			g to $5p - q = 84, q - p = -16$	M1 A1 A1	Must get to a pair of simultaneous equations for this mark
3	(i)	$\frac{\mathrm{d}y}{\mathrm{d}k} = k$ $k = 2$	$\left(\frac{1}{4}x-5\right)^7$	M1 A1	
			dv	[2]	
	(ii)	Use ∂y	$y = \frac{\mathrm{d}y}{\mathrm{d}x} \times \partial x$ with $x = 12$ and $\partial x = p$	M1	$\sqrt[n]{}$ on <i>k</i> needs both M marks
		-256p		A1√ [≜] [2]	$\sqrt[n]{}$ only for $-128kp$ and must be evaluated
4	(i)	10		B1 [1]	
	(ii)	-5		B1 [1]	Not $\log_p 1 - 5$
(iii)	$\log_p X$	$Y = \log_p X + \log_p Y = 7$	B1	$Or \log_{XY} p = \frac{1}{\log_p XY}$
		1			Do not allow just $\log_p X + \log_p Y = 7$
		$\frac{1}{7}$		B1√ [^] [2]	$\sqrt[n]{}$ on $\frac{1}{\log_p XY}$

				Syllabus Mu Mu 0606 Mu Mu Each in two variables and not quadratic as far as $x = \dots$ or $y = \dots$	
	Page 4	Mark Scheme		Syllabus n. Th	
		IGCSE – October/November	0606		
5			D1	All,	S
5		4y = 5 oe 2y = 5 oe	B1 B1	°C/C	
		e their linear simultaneous equations	M1	Each in two variables and not	<i>Y</i>
		-		quadratic as far as $x = \dots$ or $y = \dots$	·CO2
	x = 3	3 or $y = -0.5$	A1,A1√ [5]		2
	OR	from log	B1		
		2x - 2.408y = 3.01	B1		
		4x + 0.954y = 2.386	21		
		from ln $6x - 5.545y = 6.931$	B1		
		7x + 2.197y = 5.493	B1		
		M1A1A1 follows as before			
6	(a) (i) -8 or		B1	± 40 implies $\pm 2 \times 20$ or ± 160	
	-16	$0(x^3)$ isw	B1	hence B1 OK if seen in expansion	
			[2]		
	(ii) $60(x)$		B 1	Can be implied	
		$\frac{1}{2}$ (their 60)	M1		
	-130	$0(x^3)$	A1 [3]		
	(b) $16x^2$	$+32x+24+\frac{8}{x}+\frac{1}{x^2}$ oe	B3,2,1,0	Terms must be evaluated (allow $24x^0$)	
		<i>x x</i>		B2 for 4 terms correct. B1 for 2 or 3 terms correct.	
			[3]	ISW once expansion is seen.	
7	(i) $l = \frac{3}{2}$	$\frac{500}{r^2}$	B 1	allow $lx^2 = 3500$	
		$3 \times 4x + 2x + 2l$	B 1	RHS 3 terms e.g. $12x + 2x + 2\left(\frac{3500}{x^2}\right)$	
				or better	
	Subs	titute for <i>l</i> and correctly reach			
		$4x + \frac{7000}{r^2}$	DB1ag	Dependent on both previous B marks	
		л Л	[3]		
	(ii) $\frac{dL}{du} =$	$=14-\frac{14000}{x^3}$	M1A1	M1 either power reduced by one	
				A1 both terms correct	
	Equa	te $\frac{dL}{dx}$ to 0 and solve	DM1	Must get $x^n =$	
	$\begin{array}{l} x = 1 \\ L = 2 \end{array}$	0	A1	Both values	
		$=\frac{42000}{x^4}$ and minimum stated	B1 [5]	Or use of gradient either side of turning point.	

Pag	e 5	Mark Scheme		Syllabus 5. 2
U		IGCSE – October/Novem	ber 2013	0606
(i)	x^2		B1 [1]	Syllabus 0606 Implied by axes or values in a May be seen in (ii) Must be linear scales At least 3 correct points plotted and
(ii)	Plot	$\frac{y}{r}$ against x^2 with linear scales		Must be linear scales
	x^2	4 16 36 64	B1	At least 3 correct points plotted and
	$\frac{y}{x}$	4.8 9.6 17.5 29	B1 [2]	no incorrect points Line must be ruled and through at least 2 correct points
(iii)		s gradient (0.4) 0.4 ± 0.02	M1	Condone use of correct values from table/graph to find gradient and /or
		$.2 \pm 0.4$	A1 B1 [3]	equation. Values read from graph must be correct.
(iv)	Read	$\frac{y}{x} = 12.5$	M1	Obtaining $(x^2) = 22$ to 24 from graph
	or su	bstitute in formula		As far as $x^2 = +ve$ constant
	4.8		A1 [2]	4.7 to 4.9 ignore –4.8 or 0
	Meth		M1	
		s components in $\alpha = 40$	A1 A1	
		$\cos\alpha + 1.8) = 70$	M1A1	
		$\cos \alpha = 48.4$	DM1	
	Solve $\alpha = 3$	e for v or α	A1	
	u = 5 v = 5		A1 [8]	Allow 0.691 radians
	Meth	od B		
	<u> </u>	<u>70</u>		
		$.8 \times 12 = 21.6$.0 - 21.6 = 48.4	B1 B1	
	•	$= 40^2 + 48.4^2 (= 3942.56)$	M1	
	D = 0	52.8	A1	
	$V = -\frac{1}{2}$		DM1	
	V = 5		A1	5.23 or better
	tan a	$x = \frac{40}{48.4}$	M1	
	$\alpha = 3$		A1	Allow 0.691 radians
			[8]	

Page 6	Page 6 Mark Scheme IGCSE – October/November 2013		Syllabus N.D. M.
-			0606
$v = \frac{v}{1}$ tan δ	$\frac{v}{V}$ $\frac{\delta}{1.8}$ $\frac{70}{40^2 + 70^2} (= 80.6)$ $\frac{40^2 + 70^2}{12} (= 6.72)$ $= \frac{4}{7} \rightarrow (\delta = 29.74) \text{ oe}$ $1.8^2 + 6.72^2 - 2 \times 1.8 \times 6.72 \cos 29.74$	B1 B1 B1 M1 A1	$\frac{Syllabus}{0606} MMM Multiple Market and a straight for the second straight$
$\frac{\sin\beta}{1}$ $\beta = 9$	$8 = \frac{\sin 29.74}{5}.23$ 9.8(3) or 9.8(2) 19.74 + $\beta = 39.6$	M1 A1 A1 [8]	Allow 0.172 radians Allow 0.691 radians
x = 1 $\tan \delta$ $D^{2} =$ V = ($\frac{z}{D}$ $\frac{\delta}{21.6}$ $\frac{1}{40^{2} + 70^{2}} (= 80.6)$ $8 \times 12 = 21.6$ $= \frac{4}{7} \rightarrow (\delta = 29.74) \text{ oe}$ $21.6^{2} + 80.6^{2} - 2.21.6.80.6 \cos 29.74$ $62.8/12) = 5.23$	B1 B1 B1 M1 A1 M1	This method has extra steps so note at this point the M mark is for an equation in D but the A mark is for a value of V .
$\beta = 9$	$6 = \frac{\sin 29.74}{62}.8$.8(3) or 9.8(2) .9.74 + $\beta = 39.6$	A1 A1 [8]	Allow 0.172 radians Allow 0.691 radians

					my a star
	Page 7 Mark Scheme			Syllabus 3. 3	
			IGCSE – October/November	2013	0606
10	(i)	15.4 t $\theta = 2$	$= 12^{2} + 12^{2} - 2 \times 12 \times 12 \times \cos 1.4$ o 15.5 $\pi - 1.4 (= 4.88)$ $r = r\theta (= 58.6)$	M1 A1 B1 M1	Syllabus 0606Mu Mu Mu Mu Main B = $2 \times 12 \sin 0.7$ May be implied May be implied 12×4.9 or better oeMu Mu Mu Mu Mu Mu Mu Mu Mu Mu Mu Mu Mu
		74.1	$\frac{1}{1}$ 12 ² (2 1 4)(-272)	A1 [5]	
	(ii)	$\pi \times 12$	or) $\frac{1}{2} \times 12^2 \times (2\pi - 1.4) (= 352)$ or $2^2 - \frac{1}{2} \times 12^2 \times 1.4$	M1	May be implied .
			ngle) = $\frac{1}{2} \times 12 \times 12 \times \sin 1.4 (= 70.9 \text{ or } 71)$ of major sector + Area of triangle r 423	M1 M1 A1 [4]	May be implied
11	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} =$		B1	
		$m = \frac{1}{3}$	$\frac{1}{2}e^{3}$	M1	For insertion of $x = 9$ into their $\frac{dy}{dx}$. 6.7 or better if correct.
			$a^{3} = \frac{1}{3}e^{3}(x-9)$	DM1	Using their evaluated <i>m</i> to find eqn y = 6.7x - 40.2 or better if correct.
		2	y = 0, x = 6	A1 [4]	Accept value that rounds to 6.0 to 2sf
	(ii)		triangle $1.5e^3$ or 30.1	B1	
		$\int e^{\frac{1}{3}x}$	$dx = 3e^{\frac{1}{3}x} \text{ oe}$	B1	
			limits of 0 and 9 in integrated function.	M1	± must see both values inserted if incorrect answer
		Area	3 or 57.3 under curve subtract area of triangle - 3 or 27.1	A1 M1 A1	Condone 27.2 if obtained from
				[6]	57.3 – 30.1.

	Page 8	Mark Scheme IGCSE – October/November 2013		Syllabus 0606 One correct value.
12	tan	secx = $\frac{1}{\sin x}$ inserted into equation $1x = -\frac{2}{7}$	B1 DB1	inscioud.com
	164 344		B1 B1√ [∿] [4]	One correct value. \checkmark on 180 + (164.1) Must come from tanx = Condone164 and 344 Deduct 1 mark for extras in range
	Fin 0.89	 <i>p</i>-1) = 0.79or 2.34 <i>y</i> using radians 98 (or 0.9 or 0.90) 4.04 and 4.81(45) 	B1 M1 A1 A1 A1 [5]	Allow 0.8 , 2.3 or 45.6° Add 1 then divide by 2 on a correct angle One correct value Another correct value Final two values Deduct 1 mark for extras in range