www.mymathscloud.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/21 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		h 4
Page	Mark Scheme	Syllabus
	IGCSE – October/November 2013	0606
	s are of the following three types:	Paths Cloud
M	Method mark, awarded for a valid method applied to the not lost for numerical errors, algebraic slips or errors usually sufficient for a candidate just to indicate an inter-	in units. However, it is not

Mark Scheme Notes

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol findlies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2. 1. 0 means that the candidate can earn anything from 0 to 2.

		1	h	1
Page 3	Mark Scheme	Syllabus	·3.	2
	IGCSE – October/November 2013	0606	1/2	3.
			一 ′′る	

			J. J
1	(x+6)(x-1)	M1	Attempt to solve a three term quadratic
	Critical values –6 and 1	A1	1
	-6 < <i>x</i> < 1	A1 [3]	Allow $x > -6$ AND $x < 1$ but not OR or a comma. Mark final answer.
2	$\left(4\sqrt{5} - 2\right)^2 = 80 - 16\sqrt{5} + 4$	M1	Attempt to expand, allow one error,
	Multiply top and bottom by $\sqrt{5} + 1$	M1	must be in the form $a + b\sqrt{5}$. Must be attempt to expand top and bottom.
	$17\sqrt{5} + 1$	A1 A1 [4]	Allow A1 for $\frac{68\sqrt{5}+4}{c}$
	OR $(4\sqrt{5}-2)^2 = 80-16\sqrt{5}+4$ $(\sqrt{5}-1)(p\sqrt{5}+q)=5p-q+\sqrt{5}(q-p)$	M1 M1	
	Leading to $5p - q = 84$, $q - p = -16$ p = 17 $q = 1$	A1 A1	Must get to a pair of simultaneous equations for this mark
3 (i)	$\frac{\mathrm{d}y}{\mathrm{d}k} = k \left(\frac{1}{4}x - 5\right)^7$	M1	
	k = 2	A1 [2]	
(ii)	Use $\partial y = \frac{\mathrm{d}y}{\mathrm{d}x} \times \partial x$ with $x = 12$ and $\partial x = p$	M1	$^{\uparrow}$ on k needs both M marks
	-256p	A1 [↑] [2]	only for −128kp and must be evaluated
4 (i)	10	B1	
(ii)	-5	[1] B1	Not $\log_p 1 - 5$
(iii)	$\log_p XY = \log_p X + \log_p Y = 7$	[1] B1	Or $\log_{XY} p = \frac{1}{\log_p XY}$
			Do not allow just $\log_p X + \log_p Y = 7$
	$\frac{1}{7}$	B1√ [2]	$ ^{*} \text{ on } \frac{1}{\log_p XY} $

			4	1.
Page 4	Mark Scheme	Syllabus	·3.	12
_	IGCSE – October/November 2013	0606	1/2	

				4/%
5		x - 4y = 5 oe	B1	Each in two variables and not
		2x + 2y = 5 oe	B 1	100
		Solve their linear simultaneous equations	M1	
		2 27 11 0.5		quadratic as far as $x = \dots$ or $y = \dots$
		x = 3 or $y = -0.5$	A1,A1√	
			[5]	
		OR from log	B 1	
		0.602x - 2.408y = 3.01	B1	
		0.954x + 0.954y = 2.386		
		OR from ln	B1	
		1.386x - 5.545y = 6.931	B1	
		2.197x + 2.197y = 5.493		
		Final M1A1A1 [↑] follows as before		
6	(a) (i)	-8 or 20	B1	± 40 implies $\pm 2 \times 20$ or ± 160
	(4) (1)	0 01 20	<i>D</i> 1	hence B1
		$-160(x^3)$ isw	B 1	OK if seen in expansion
			[2]	•
	(ii)	$60(x^2)$	B1	Can be implied
		(i) $+\frac{1}{2}$ (their 60)	M1	
		2		
		$-130(x^3)$	A1	
		0 1	[3]	
	(b)	$16x^2 + 32x + 24 + \frac{8}{x} + \frac{1}{x^2}$ oe	B3,2,1,0	Terms must be evaluated (allow $24x^0$)
		$x - x^2$		B2 for 4 terms correct.
			[3]	B1 for 2 or 3 terms correct.
			[3]	ISW once expansion is seen.
7	(i)	$l = \frac{3500}{2}$	B1	allow $lx^2 = 3500$
,	(1)	χ		
		$L = 3 \times 4x + 2x + 2l$	B 1	RHS 3 terms e.g. $12x + 2x + 2\left(\frac{3500}{x^2}\right)$
				or better
		Substitute for <i>l</i> and correctly reach		
		$L = 14x + \frac{7000}{r^2}$	DD1 as	Dependent on both previous B marks
		$L = 14x + \frac{1}{x^2}$	DB1ag [3]	Dependent on both previous B marks
			[2]	
	(ii)	$\frac{dL}{dx} = 14 - \frac{14000}{x^3}$	M1A1	M1 either power reduced by one
	,	dx x^3		A1 both terms correct
		Equate $\frac{dL}{dr}$ to 0 and solve	DM1	Must get $x^n =$
		dx = 10	A1	Both values
		x = 10 $L = 210$	111	
		$\frac{d^2y}{dx^2} = \frac{42000}{x^4}$ and minimum stated	B1	Or use of gradient either side of
		COLUMN TO THE TOTAL TOTA	[5]	turning point.

Page 5	Mark Scheme	Syllabus
	IGCSE – October/November 2013	0606

	Page	5		Ma	rk Scheme		Syllabus	- 12. W	3
	ı ugu		IGCS		ober/Novemb	per 2013	0606	1/2	6
	(i)	x^2				B1 [1]	Implied by axes of May be seen in (i		Phsch
	(ii)	Plot $\frac{y}{x}$	against x^2	with linea	ar scales		Must be linear so	cales	
			4 16	36	64	B1	At least 3 correct		d and
		$\frac{y}{x}$.8 9.6	17.5	29	B1 [2]	no incorrect poin Line must be rule least 2 correct po	ed and throug	h at
	(iii)	Finds g $a = 0.4$	radient (0.4))		M1	Condone use of c table/graph to fin		
		b = 3.2				A1 B1 [3]	equation. Values must be correct.		
(iv)	Read $\frac{y}{x}$	=12.5			M1	Obtaining (x^2) =	22 to 24 fron	n grapl	
		or subst	itute in forn	nula			As far as $x^2 = +$	ve constant	
		4.8				A1 [2]	4.7 to 4.9 ign	ore –4.8 or 0	
		$12v\sin$	omponents $\alpha = 40$	0		M1 A1 A1			
		12vcos		U		M1A1 DM1 A1 A1 [8]	Allow 0.691 radi	ans	
		Method	70	D	→ ≠ 40				
			$ \begin{array}{c} x \\ < 12 = 21.6 \\ -21.6 = 48.4 \end{array} $	y 4		B1 B1			
			$0^2 + 48.4^2 (=$	3942.56)		M1			
		$D = 62.$ $V = \frac{D}{12}$	8			A1 DM1			
		V = 5.2	3			A1	5.23 or better		
		$\tan \alpha =$	40			M1			
		$\alpha = 39$.	48.4			A1	Allow 0.691 rad		

			h	1
Page 6	Mark Scheme	Syllabus	· 3.	1
	IGCSE – October/November 2013	0606	1/2	6
	•			

IGCSL - October/November	2013	0000
Method C		Mathschoud.
$z = \sqrt{40^2 + 70^2} (= 80.6)$ $v = \frac{\sqrt{40^2 + 70^2}}{12} (= 6.72)$	B1 B1	
$\tan \delta = \frac{4}{7} \to (\delta = 29.74) \text{ oe}$ $V^{2} = 1.8^{2} + 6.72^{2} - 2 \times 1.8 \times 6.72 \cos 29.74$ $V = 5.23$ $\frac{\sin \beta}{1}.8 = \frac{\sin 29.74}{5}.23$ $\beta = 9.8(3) \text{ or } 9.8(2)$ $\alpha = 29.74 + \beta = 39.6$	B1 M1 A1 M1 A1 A1	Or $tan(90 - \delta) = \frac{7}{4}$ Allow 0.172 radians Allow 0.691 radians
Method D $z = \sqrt{40^2 + 70^2} (= 80.6)$ $x = 1.8 \times 12 = 21.6$ $\tan \delta = \frac{4}{7} \rightarrow (\delta = 29.74) \text{ oe}$ $D^2 = 21.6^2 + 80.6^2 - 2.21.6.80.6 \cos 29.74$ $V = (62.8/12) = 5.23$ $\frac{\sin \beta}{21}.6 = \frac{\sin 29.74}{62}.8$	B1 B1 B1 M1 A1	This method has extra steps so note at this point the M mark is for an equation in D but the A mark is for a value of V.
$\beta = 9.8(3) \text{ or } 9.8(2)$ $\alpha = 29.74 + \beta = 39.6$	A1 A1 [8]	Allow 0.172 radians Allow 0.691 radians

			1/2	1
Page 7	Mark Scheme	Syllabus	·3.	1
	IGCSE – October/November 2013	0606	1/2	

		1	4/2
10 (i)	$AB^{2} = 12^{2} + 12^{2} - 2 \times 12 \times 12 \times \cos 1.4$ 15.4 to 15.5 $\theta = 2\pi - 1.4 (= 4.88)$	M1 A1 B1	$AB = 2 \times 12 \sin 0.7$ May be implied May be implied
	Use $s = r\theta (= 58.6)$ 74.1	M1 A1 [5]	12×4.9 or better oe
(ii)	(Sector) $\frac{1}{2} \times 12^2 \times (2\pi - 1.4) (= 352)$ or	M1	May be implied .
	$\pi \times 12^2 - \frac{1}{2} \times 12^2 \times 1.4$		
	(Triangle) = $\frac{1}{2} \times 12 \times 12 \times \sin 1.4 (= 70.9 \text{ or } 71)$	M1	
	Area of major sector + Area of triangle 422 or 423	M1 A1 [4]	May be implied
11 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3}e^{\frac{1}{3}x}$	B1	
	$dx = \frac{1}{3}e^3$	M1	For insertion of $x = 9$ into
	$y - e^3 = \frac{1}{3}e^3(x-9)$	DM1	their $\frac{dy}{dx}$. 6.7 or better if correct. Using their evaluated m to find eqn
	At Q y = 0, x = 6	A1 [4]	y = 6.7x - 40.2 or better if correct. Accept value that rounds to 6.0 to 2sf
(ii)	Area triangle 1.5e ³ or 30.1	B1	
	$\int e^{\frac{1}{3}x} dx = 3e^{\frac{1}{3}x} \text{ oe}$	B1	
	Uses limits of 0 and 9 in integrated function.	M1	± must see both values inserted if incorrect answer
	$3e^3 - 3$ or 57.3 Area under curve subtract area of triangle	A1 M1	
	$1.5e^3 - 3 \text{ or } 27.1$	A1 [6]	Condone 27.2 if obtained from 57.3 – 30.1.

			h 1	0/
Page 8	Mark Scheme	Syllabus	·3.	
	IGCSE – October/November 2013	0606	12	(8)
			- 12. B	

12	(a)	$\csc x = \frac{1}{\sin x}$ inserted into equation $\tan x = -\frac{2}{\pi}$	B1 DB1	TINSCIOUD.
		164.1 344.1	B1 B1√^	One correct value. on $180 + (164.1)$ Must come from $tanx =$ Condone 164 and 344 Deduct 1 mark for extras in range
	(b)	(2y-1) = 0.79or 2.34 Find y using radians 0.898 (or 0.9 or 0.90) 1.67, 4.04 and 4.81 (45)	B1 M1 A1 A1 A1 [5]	Allow 0.8, 2.3 or 45.6° Add 1 then divide by 2 on a correct angle One correct value Another correct value Final two values Deduct 1 mark for extras in range