CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.mymathscioud.com MARK SCHEME for the October/November 2013 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		4	m. A	1
Page 2	Mark Scheme	Syllabus	· m.	1
	IGCSE – October/November 2013	0606	J Jn C	

Mark Scheme Notes

Marks are of the following three types:

- Nathscioud.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol \checkmark implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2. 1. 0 means that the candidate can earn anything from 0 to 2.

					mm	1 Stal
	Page 3	Mark Scheme			Syllabus	2, 8
		IGCSE – October/Nove	mber 2013		0606 Jn	794 S
1	a = 3, b = 2,	<i>c</i> = 1	B1, B1, B1 [3]	B1 for	Syllabus 0606 each any use of $b^2 - 4ac$ for solution of their quadratic in	this cloud
2	Using $b^2 - 4ac$ $4k^2 + 8k -$	$e, 9 = 4 (k+1)^2$ - 5 = 0	M1 DM1		t any use of $b^2 - 4ac$ for solution of their quadratic in	
	$k=-\frac{5}{2},$	$\left(\frac{1}{2}\right)$	A1	A1 for	critical value(s), $\frac{1}{2}$ not necess	sary
	To be below th	the x-axis $k < -\frac{5}{2}$	A1 [4]	A1 for	$k < -\frac{5}{2}$ only	
	Or: $\frac{dy}{dx} = 2(k + 1)\frac{dy}{dx}$					
	To lie under th $\therefore (k+1)\frac{9}{4(k+1)}$	$e^{(x+1)^2} - \frac{9}{2(k+1)} + (k+1) < 0$ $4(k+1)^2 \text{ or equivalent}$	M1	M1 for	a complete method to this poi	int.

	Dogo 4	Maula Oalean			Sullahus 14 4 39
	Page 4 Mark Scheme IGCSE – October/Nove			2013	Syllabus 74 24
				2013	
3		$\frac{\cos\theta}{\sin\theta} + \frac{(1+\sin\theta)^2 + \cos^2\theta}{\cos\theta(1+\sin\theta)}$ $\frac{\sin\theta + \sin^2\theta + \cos^2\theta}{\cos\theta(1+\sin\theta)}$	M1		Syllabus 0606 M1 for dealing with the fractions, denominator must be correct, be generous with numerator
	$=\frac{2+2}{\cos\theta(1)}$	$2\sin\theta + \sin\theta$	DM1		M1 for expansion and use of $\cos^2 \theta + \sin^2 \theta = 1$
	$=\frac{2(1+)}{\cos\theta(1+)}$	$\frac{\sin\theta}{+\sin\theta}$	DM1		M1 for attempt to factorise
	$=2 \sec \theta$		A1	[4]	A1 for obtaining final answer correctly
	$=\frac{(\sec\theta + 1)}{\sec\theta}$ $=\frac{\sec^2\theta + 1}{\sec^2\theta}$	$\theta + \frac{1}{\sec \theta + \tan \theta}$	M1		M1 for dealing with the fractions
	sec	$\frac{\theta + 2 \sec \theta \tan \theta}{\theta + \tan \theta}$ $\frac{ec \theta + \tan \theta}{\theta + \tan \theta}$	DM1 DM1		M1 for expansion and use of $\tan^2 \theta + 1 = \sec^2 \theta$ DM1 for attempt to factorise
	$=2 \sec \theta$		A1		A1 for obtaining final answer correctly
4 (i) $n(A) = 3$		B1	[1]	If elements listed for (i), then they must be correct elements to get B1 leading to n(A) = 3. If they are not listed and correct answer given then B1.
(i	i) $n(B) = 4$		B1	[1]	If elements listed for (ii), then they must be correct elements leading to $n(B) = 4$ to get B1. If they are not listed and correct answer given then B1.
(ii	i) $A \cup B = -$	{60°, 240°, 300, 420°, 600°}	√B1	[1]	Follow through on any sets listed in (i) and (ii). Do not allow any repetitions.
(iv	$A \cap B = b$	{60°, 420°}	√B1	[1]	Follow through on any sets listed in (i) and (ii).

h

1000

					my.	
	Page 5	Mark Scheme			Syllabus	7
		IGCSE – October/Nove	mber 2013		0606	ar ar
5	(i) $9x - \frac{1}{3}\cos(x)$	s 3 <i>x</i> (+ <i>c</i>)	B1, B1, B1	B1 for	9x, B1 for $\frac{1}{3}$ or cos3x	My Assuss athscioud.com
			[3]	B1 for	$-\frac{1}{3}\cos 3x$	· · · · · · · · · · · · · · · · · · ·
					3 ne omission of $+ c$	OM
	(ii) $\left[9x - \frac{1}{3}cc\right]$	$\left[\frac{\pi}{9}\right]^{\pi}$				
		$\left(\pi - \frac{1}{3}\cos\frac{\pi}{3}\right) - \left(\pi - \frac{1}{3}\cos\frac{\pi}{3}\right)$	M1	M1 for to (i)	correct use of limits in their	r answer
	$=8\pi+\frac{1}{2}$		A1, A1 [3]	A1 for	each term	
6	$f\left(\frac{1}{2}\right) = \frac{a}{8} + 1 + \frac{a}{8} + 1 + \frac{a}{8} + 1 + \frac{a}{8} + \frac{a}{8}$	$+\frac{b}{2}-2$	M1	M1 for	substitution of $x = \frac{1}{2}$ into the substitution of $x = \frac{1}{2}$ is the substitution of $x = \frac{1}{2}$ into the substitution of $x = \frac{1}{2}$ is the substitution of x	f (x)
	leading to $a + c$	4b - 8 = 0	A1	A1 for	correct equation in any form	a
	f(2) = 2f(-1)		M1		attempt to substitute $x = 2$ of into $f(x)$ and use $f(2) = \pm 2f($	
	8a + 16 + 2b -	-2 = 2(-a + 4 - b - 2)	A1		a correct equation in any for	rm
	leading to $10a$ $\therefore a = -2, b =$	+4b+10 = 0 or equivalent = $\frac{5}{2}$	DM1 A1 [6]	attempt obtain	on both previous M marks) t t to solve simultaneous equa either <i>a</i> or <i>b</i> both correct	

							WW.		
Pa	age 6	Mark Scheme				Syllabus	· · · · · · · · · · · · · · · · · · ·	31	
		IGCSE – October/Nove	IGCSE – October/November 2013			0606	2	3 3	27
7 (a)	(i) 360	0	B1				MNN MY	aths c	ns
	(ii) 120	0	B1	[1]				10	4~
(b)			B1	[1]					Y.COD
(*)				[1]					~
	(ii) 28		B1	[1]					
	(i.e. 92	$24 - {\binom{8}{3} \times {}^{4}C_{3}} - {\binom{8}{2} \times {}^{4}C_{4}}$ 24 - 3M 3W - 2M 4W 24 - 224 - 28	M1 A1 A1	[3]	correct A1 for	3 terms, at lea in terms of C any pair (must final answer	notation or e	evaluated.	
Or	5M 1W	${}^{8}C_{4} \times {}^{4}C_{2} = 420$ ${}^{8}C_{5} \times {}^{4}C_{1} = 224$ ${}^{8}C_{6} = 28$	M1 A1		correct	any pair (must	notation or e	evaluated.	
		Total $= 672$	A1		A1 for	final answer			
8 (i)			B1 B1			correct shape $(-3, 0)$ or -3 so	een on grapl	h	
			B1		B1 for	(2, 0) or 2 seen	n on graph		
			B1		B1 for	(0, 6) or 6 seer	n on graph o	or in a table	>
				[4]					
(ii)	$\left(-\frac{1}{2},\frac{25}{4}\right)$	-	B1, E	B1 [2]	B1 for	each			
(iii)	$k > \frac{25}{4}$ or	$r \frac{25}{4} < k \ (\le 14)$	B1	[1]					

						mm	1.
	Pag	ge 7	Mark Scheme			Syllabus	21
			IGCSE – October/Nove	mber 2013		0606 Jn	737
9	(a)	$12x^{2}\ln(2x)$	$2x+1)+4x^3\left(\frac{2}{2x+1}\right)$	M1 A2, 1, 0 [3]		differentiation of a correct p each error	MOSCIONSCION COL
	(b)	(i) <u>d</u>	$\frac{y}{x} = \frac{(x+2)^{\frac{1}{2}}2 - 2x(x+2)^{-\frac{1}{2}}\frac{1}{2}}{x+2}$	M1, A1		the differentiation of a quotient ing $(x+2)^{\frac{1}{2}}$	m
			$=\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x)$	DM1		correct unsimplified for attempt to simplify	
		=	$\frac{x+4}{\left(x+2\right)^{\frac{3}{2}}}$	A1 [4]	A1 for given a	correct simplification to obta	in the
		Or: $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x \Big($	$\left(-\frac{1}{2}\right)(x+2)^{-\frac{3}{2}}+(x+2)^{-\frac{1}{2}}(2)$	M1, A1		the differentiation of a product ing $(x+2)^{-\frac{1}{2}}$	
		$=\frac{x}{x}$	$(x+2)^{-\frac{3}{2}}(2(x+2)-x)$ $(x+4)^{-\frac{3}{2}}(2(x+2)-x)$	DM1 A1	DM1 f	correct unsimplified for attempt to simplify correct simplification to obta answer	in the
	(ii)	$\frac{10x}{\sqrt{x+2}}$	(+c)	M1,A1 [2]	A1 cor	$\frac{1}{5} \times \frac{2x}{\sqrt{x+2}} \text{ or } 5 \times \frac{2x}{\sqrt{x+2}}$ rect only, allow unsimplified ne omission of $+c$	
	(iii)	$\left[\frac{10x}{\sqrt{x+2}}\right]$	$\int_{2}^{7} = \frac{70}{3} - \frac{20}{2}$	M1		correct application of limits to (b)(ii)	in their
			$=\frac{40}{3}$	A1 [2]			

Pa	ge 8	Mark Scheme IGCSE – October/Nove		Syllabus 0606 M1 for attempt at a perp gradient M1 for attempt at straight line equation, must be perpendicular and passing through
10 (i)	$\sqrt{20}$ or 4.	47	B1 [1]	nsclou
(ii)		$=\frac{1}{2}, \perp \text{grad} = -2$ - 4 = -2(x - 1)	M1 M1, A1	must be perpendicular and passing through
	(y = -2x +	6)	[3]	<i>B</i> . A1 allow unsimplified
(iii)	$(x-1)^2$ + Coords of	$C(x, y)$ and $BC^2 = 20$ $(y-4)^2 = 20$ or $C(x, y)$ and $AC^2 = 40$ $(y-2)^2 = 40$	M1 A1	M1 for attempt to obtain relationship using an appropriate length and the point $(1, 4)$ or (-3, 2) A1 for a correct equation
		resection with $y = -2x + 6$, $x^{2} - 10x - 15 = 0$ or -= 0	DM1	DM1 for attempt to solve with $y = -2x + 6$ and obtain a quadratic equation in terms of one variable only
	iving $x =$ nd $y =$		DM1 A1, A1 [6]	M1 for attempt to solve quadratic A1 for each 'pair'
	Or , using vert $\overrightarrow{AB} = \begin{pmatrix} 4 \\ 2 \end{pmatrix}$	ector approach:	B1	May be implied
		$\begin{pmatrix} -2\\4 \end{pmatrix} = \begin{pmatrix} -1\\8 \end{pmatrix}$ $\begin{pmatrix} 2\\-4 \end{pmatrix} = \begin{pmatrix} 3\\0 \end{pmatrix}$	M1 A1, A1 A1,A1	M1 for correct approach A1 for each element correct A1 for each element correct

				hun.	A Stan
Page 9	Mark Scheme	e		Syllabus	2
	IGCSE – October/Nove	mber 2013		0606 43	(Ax, 0)
11 (a) (i) $\begin{pmatrix} 4\\ 4 \end{pmatrix}$	$\begin{pmatrix} 3\\3 \end{pmatrix}$	B1 [1]		Syllabus 0606 any 2 correct elements	hscloud.
(ii) A ²	${}^{2} = \begin{pmatrix} 16 & 9 \\ 12 & 13 \end{pmatrix}$	B1, B1 [2]		any 2 correct elements all correct	COM
()	s the inverse matrix of \mathbf{A}^2 $\frac{1}{100} \begin{pmatrix} 13 & -9 \\ -12 & 16 \end{pmatrix}$	√B1, √B1 [2]	Follow	\mathbf{A}^2 through on their \mathbf{A}^2	
(b) det $C = x_{0}$ = 25	$(x-1) - (-1)(x^2 - x + 1)$ x ² - 2x + 1	M1 A1	A1 for	attempt to obtain det C this correct quadratic expression correct det C	on
$b^2 - 4ac <$	< 0, 4 – 8 < 0	DM1	solve u comple	For use of discriminant or attemption use of discriminant or attempt to ete the square in order to show the real roots.	
No real so	plutions (so det $\mathbf{C} \neq 0$)	A1 [4]		correct reasoning or statement re no real roots.	that

	Page 10		Mark Schem IGCSE – October/Nove		Syllabus My My	
12	(a)	(i)	f(-10) = 299, f(8) = 191 Min point at (0, -1) or when y = -1 ∴ range $-1 \le y \le 299$	M1 B1 A1	[3]	Syllabus 0606Mu Mu Mu Mu Mu Mu Mu Mu Mu Mu Mu Mu Mu Mu Mu
		(ii)	$x \ge 0$ or equivalent	B1	[1]	Allow any domain which will make f a one-one function Assume upper and lower bound when necessary.
	(b)	(i)	$g^{-1}(x) = \ln\left(\frac{x+2}{4}\right)$ or $\frac{\lg\left(\frac{x+2}{4}\right)}{\lg e}$	M1 A1	[2]	M1 for complete method to find the form inverse function, must involve ln or lg if appropriate. May still be in terms of y . A1 must be in terms of x
		(ii)	$gh(x) = g(1n5x) = 4e^{1n5x} - 2 20x - 2 = 18, x = 1$	M1 A1 A1	[3]	M1 for correct order A1 for correct expression $4e^{\ln 5x} - 2$ A1 for correct solution from correct working
			Or $h(x) = g^{-1}(18)$ 1n5x = 1n5 leading to $x = 1$	M1 A1 A1		M1 for correct order A1 for correct equation A1 for correct solution from correct working