CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.mymathscioud.com MARK SCHEME for the October/November 2012 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		m	m.
Page 2	Mark Scheme	Syllabus	· n.
	IGCSE – October/November 2012	0606	- Jn

Mark Scheme Notes

Marks are of the following three types:

- nathscioud.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

		h	22.	1
Page 3	Mark Scheme	Syllabus	· m.	7
	IGCSE – October/November 2012	0606	T In	9

Page 3	Mark Scheme	Syllabus	· か. ・ チャー · · · · · · · · · · · · · · · · · · ·			
	IGCSE – October/November 2012	0606	Ln Maria			
The following abbreviations may be used in a mark scheme or used on the scripts:						
AG	Answer Given on the question paper (so extra check the detailed working leading to the result is valid)	king is needed to	ensure that			
BOD	Benefit of Doubt (allowed when the validity of a sol	lution may not be	absolutely			

- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

			L.
Page 4	Mark Scheme	Syllabus	N. N. M.
	IGCSE – October/November 2012	0606	The star

1	1.2 $5x + 7 = -13 \text{ or } 25x^2 + 70x + 49 = 169$ 5(5x - 6)(x + 4) = 0 -4	B1 M1 A1	correct positive value correct method to find second value correct final answer
		[3]	
2	(i) $\frac{1}{6 \times 7 - 8 \times 4} \begin{pmatrix} 6 & -8 \\ -4 & 7 \end{pmatrix}$	B1B1 [2]	B1 for each part of the inverse
	(ii) $\begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{10} \begin{pmatrix} 6 & -8 \\ -4 & 7 \end{pmatrix} \begin{pmatrix} 39 \\ 23 \end{pmatrix}$	M1	pre-multiply $\begin{pmatrix} 39\\23 \end{pmatrix}$ by their inverse
	$= \begin{pmatrix} 5\\0.5 \end{pmatrix}$	A1 [2]	correct answers, correctly associated
3	$(3\sqrt{3} - 1)^2 = 27 - 6\sqrt{3} + 1$	M1	multiplication, including $a\sqrt{3} \times b\sqrt{3} = 3ab$
	or $(3\sqrt{3} - 1)(2\sqrt{3} + 3) = 18 + 7\sqrt{3} - 3$	A1	a correct expansion
	$\times \frac{2\sqrt{3}+3}{2\sqrt{3}+3} \text{ or } 28-6\sqrt{3} = \frac{a\sqrt{3}+b}{3}(2-3)$	M1	valid method to obtain a value for <i>a</i> or <i>b</i>
	$\frac{38\sqrt{3}+48}{3}$ or $a = 38, b = 48$	A1 [4]	correct answers

					hun	4
	Page 5	Mark Sche	eme	040	Syllabus	14
		IGCSE – October/No	ovember 2	012	0606	ath a
						The s
4						°C/0.
	$\overrightarrow{XZ} = \begin{pmatrix} 16\\ 20 \end{pmatrix}$		B1	correct vect	or for \overrightarrow{XZ}	SUD.COL
	$\overrightarrow{OY} = \begin{pmatrix} 4 \\ -27 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} 1 \\ 2 \end{pmatrix}$	$ \binom{16}{20} \operatorname{or} \binom{20}{-7} + \frac{1}{4} \binom{-16}{-20} $	M1	valid metho	d for \overrightarrow{OY}	17
	$=$ $\begin{pmatrix} 16\\ -12 \end{pmatrix}$		A1	correct vect	or for <i>OY</i>	
	$\left \overrightarrow{OY}\right = \sqrt{16^2 + \left(-12\right)^2}$	$\overline{)^2}$ oe	M1	uses Pythag	oras to find length of \overrightarrow{OY}	
	unit vector in directi	ion of $\overrightarrow{OY} = \begin{pmatrix} 0.8 \\ -0.6 \end{pmatrix}$ oe	A1 [5]	correct vect	or expression	
	OR $\overrightarrow{OY} - \overrightarrow{OX} = 3\overrightarrow{O}$	$\overrightarrow{OZ} = 3\overrightarrow{OY}$	B1	correct vect	or equation	
	$4\overrightarrow{OY} = \begin{pmatrix} 4\\ -27 \end{pmatrix}$	$+3\binom{20}{-7} = \binom{64}{-48}$	M1	collect \overrightarrow{OY}	s and substitute for \overrightarrow{OX} and	<i>OŻ</i>
	$\overrightarrow{OY} = \begin{pmatrix} 16\\ -12 \end{pmatrix}$ e	etc.	A1	correct vect	or for <i>OY</i>	
	OR $\overrightarrow{OY} = \frac{\overrightarrow{OX} + 3\overrightarrow{O}}{4}$		B1	correct use	of intercept theorem	
	$=\frac{\binom{4}{-27}+3}{4}$	$3\left(\frac{20}{-7}\right)$	M1	substitute fo	or \overrightarrow{OX} and \overrightarrow{OZ} and divide	
	$= \begin{pmatrix} 16\\ -12 \end{pmatrix}^4$	etc.	A1	correct vect	or for <i>OY</i>	

					my	
	Page 6	Mark Scheme			Syllabus	2
		IGCSE – October/No	ovember 2	2012	0606	7. 7. 2
						Athe is
5	$mx + 2 = mx^2 + 7x + 7x$	11	M1*	eliminates e	either y or x	°C/OJ
	$mx^2 + 7x - mx + 9 = 0$	0	A1	correct equa	ation	44
	$(7-m)^2 - 4 \times m \times 9$	~ 0	MIdep*	compares di	iscriminant with 0	·CO
	$m = 30m + 49 \sim 0$ (m - 1)(m - 49) m =	1 49	M1	solves 3-ter	mance m matrix for m	1
	1 < m < 49	1, 12	A1	correct answ	ver	
			[6]			
6	(a)					
	$\sec^2 x = \frac{1}{p^2}$		B1	correct expr	ression for $\sec^2 x$ in terms of	f p
	$\tan^2 x = \sec^2 x -$	$1 = \frac{1}{p^2} - 1$	M1 A1	substitution correct answ	in correct formula (<i>p</i> s only ver, oe	y)
	OR $\sin^2 x = 1 - $	p^2	[3]			
	₂ sin	$x^{2} x (1-p^{2})$	B1	correct expr	ression for $\sin^2 x$ in terms of	f p
	$\tan^2 x = \frac{1}{\cos^2 x}$	$\frac{1}{p^2 x} = \frac{1}{p^2}$	M1	substitution	in correct formula (<i>ps</i> only	y)
	•••	••• P	Al	correct ansv	ver, oe	
	OR $\sqrt{1-p^2}$		B1	'opposite' is	s $\sqrt{1-p^2}$	
		<i>p</i>				
	$\tan x = \frac{\sqrt{1-x}}{\mu}$	$\frac{p^2}{p}$	M1	$\tan x = \text{their}$	opposite ÷ their adjacent	
	$\tan^2 x = \frac{1-p}{p}$	$\frac{p^2}{2}$	A1	correct answ	ver, oe	
	(b) $\cot^2\theta + 2(\cot\theta \tan^2\theta)$	$an\theta$ + $tan^2\theta$	B1	correct squa	aring of bracket	
	$\cot^2\theta = \csc^2\theta$	$-1 ext{ or } an^2 \theta = \sec^2 \theta - 1$	B1	use of a cor	rect relevant formula	
	completion	"AG"	B1 [3]	correct com	pletion	
			[-]			

4,

·					ny .	4
Page 7	Mark Sch	eme	042	Syllabus		24
	IGCSE – October/No	ovember 2	012	0606	- m	ath.
(a)						The s
$\int \left(x^{\frac{3}{2}} + 3x^{\frac{1}{2}}\right) dx$		B1 M1	correct expre increase frac	ession in terms tional power b	of indices y 1	OUD.C
$\frac{2}{5}x^{\frac{5}{2}} + 2x^{\frac{3}{2}}(+c)$		A1 [3]	correct answ	ver, ISW		
(b)						
$\frac{k}{2x+5}$ oe		M1	integral of co	orrect form, <i>k</i> a	constant	
$\frac{-10}{2x+5}$ oe		A1	correct integ	ral, ignore '+ c	,	
$\frac{k}{2 \times 10 + 5} - \frac{k}{5}$		M1	their integral with $x = 0$	with $x = 10$ sub-	btract their in	ntegral
1.6		A1√ [4]	correct answ	ver, ft their $k \bigg(=$	$\left(\frac{-4}{25}k\right)$	
gradient $\frac{9-3}{1-(-2)} (=2)$		B1	correct gradi	ent		
(AD) $y-5=2(x-4)$	or $y = 2x - 3$	B1√	correct equa	tion for <i>AD</i> , ft	their m_{AD}	
(CD) $y - 9 = -\frac{1}{2}(x - 1)$) or $x + 2y = 19$	M1 A1	uses $m_1m_2 =$ correct equa	-1 and $x = 1$ at tion for <i>CD</i>	nd $y = 9$ in e	quation of line
solves equation for AD w D is (5, 7)	vith equation for CD	M1 A1	solving equa x = 5, y = 7	tions for a valu	the of x or y	
$\operatorname{area} = \frac{1}{2} \begin{vmatrix} 4 & -2 & 1 & 5 & 4 \\ 5 & 3 & 9 & 7 & 5 \end{vmatrix} =$	$=\frac{1}{2} 26-66 $	M1	a correct me	thod to calcula	te the area of	f the trapezium
or $=\frac{1}{2}\left(\sqrt{5}+\sqrt{45}\right)\sqrt{20}$						
= 20		A1 [8]	correct answ	rer		
OR (<i>X</i> on <i>BC</i> , <i>AX</i> // <i>DC</i>)						
gradient = $\frac{9-3}{1-(-2)}(=2)$		B1	correct gradi	ent		
(BC) y - 9 = 2(x - 1) or	y = 2x + 7	B1	correct equa	tion for <i>BC</i>		
$(AX) y-5 = -\frac{1}{2}(x-4)$	or $2y = -x + 14$	M1 A1	uses $m_1m_2 =$ correct equation	-1 and $x = 4$ at tion for AX	nd $y = 5$ in e	quation of line
solves equation BC w $X(0, 7)$	vith equation AX	M1 A1	solving equa x = 0, y = 7	tions for a valu	the of x or y	
area Δ + area rectan $=\frac{1}{2}\sqrt{20} \times \sqrt{20} + \sqrt{20}$	gle $\overline{0} \times \sqrt{5}$	M1	a correct me	thod to calcula	te the area	
= 20		Δ1	correct anou	ar.		

					4	my.	1 Stal
	Page 8	Mark Sch	eme		Syllabus	· ~,	2,
		IGCSE – October/No	ovember 2	2012	0606	5m	Tar S
9 (i)	x ³		B1 [1]	correct ansv	ver		This Cloud
$\begin{array}{c} x^{3} \\ x^{2}y \end{array}$	1 8 9.41 5.16	27 64 -6.21 -28.32	M1 A2,1,0 [3]	graph of <i>x</i> ² <i>y</i> 4, 1–3, 0 po	against x^3 , linear ints plotted correct	axes ctly	Y.COM
(iii	a) $a = 9.5$ to 10.5		B1	correct answ	ver		
	gradient = $\frac{y_2 - y_1}{y_2 - y_1}$		M1	finding num	erical value for the	he gradient	
	$b = -0.6 \pm 0.01$		A1 [3]	correct answ	ver		
(iv)) $y = \frac{a}{13.69} + 3.7b$ or	13.69y = a + 50.653b	M1	appropriate divide value	substitutions or reby 13.69	ead graph a	t 50.653 and
	$= -1.48 \pm 0.04$		A1 [2]	correct answ	ver		
10 (i)	$x^2 + 80^2$ seen		B1				
	time = $\frac{\text{distance}}{\text{speed}}$, oe		B1 [2]				
(ii)	$\left(\frac{\mathrm{d}T}{\mathrm{d}T}\right) = \frac{-1}{\mathrm{d}T} + \frac{-1}{\mathrm{d}T}$	<u>x</u>	M1*	attempt to d	ifferentiate given	expression	
	$(dx) 10 6\sqrt{x^2}$	+6400	A1A1	A1 each cor	rect unsimplified	term	
	$\frac{x}{6\sqrt{x^2 + 6400}} = \frac{1}{10}$	0e	M1dep*	attempt to so sides	olve $\frac{\mathrm{d}T}{\mathrm{d}x} = 0$, to i	nclude squa	aring both
	x = 60		A1	correct answ	ver for <i>x</i>		
	$T = 30\frac{2}{3}(30.7)$		A1 [6]	correct answ	ver for T		

					my.	
Page 9	Mark Sche	eme		Syllabus	·	2
	IGCSE – October/No	ovember 2	012	0606	- Sm	ary a
11 (a) $2^{x-2} = 100^2$,	$\frac{x-2}{2} = \log_2 100$	B1	correct expres	ssion		this cloud
or $2^{\left(\frac{x}{2}-1\right)} = 100$	2					*.com
$x = 2 + \frac{4}{0.301}$	I	M1	valid attempt	to obtain value	e for <i>x</i>	
=15.3		A1 [3]	correct answe	er		
(b)						
$\log_y 512 = 3 \text{ or } 3$	$3 = \log_y y^3$	B1	correct releva	ant use of rule f	for logarithms	\$
or $\log_y k = \frac{\log k}{\log y}$	$\frac{x}{v}$ (twice)					
$y^3 = 512 \text{ or } 2 = 512 $	$\frac{y^3}{256}$	M1	attempt to sol	lve		
<i>y</i> = 8		A1 [3]	correct answe	er		
(c)						
$\frac{6^{5z-2}}{6^{2z}} = \frac{6^{3(z-1)}}{6^{2(3-z)}}$		M1	attempt to exj or log6	press at least tv	vo elements in	n terms of 6^z
or $\log 6^{(5z-2)} - \log 6$	$b^{2z} = \log 6^{3(z-1)} - \log 6^{2(3-z)}$	A1	correct expres	ssion		
5z - 2 - 2z = 3z - 3	3 - (6 - 2z) oe	M1	uses rule of in index/log for	ndices or logari	ithms correctl	y, accept
z = 3.5		A1 [4]	correct answe	er		
12E (i) $(2x+8)^2-9$ o	ar $a = 2, b = 8, c = -9$	B1B1B1 [3]	B1 for each c	orrect value		
(ii) $f^{-1}(x) = \frac{\sqrt{(x+9)}}{2}$	<u>-8</u> oe	M1	inverse of for	$rm \frac{\sqrt{(x\pm c)\pm b}}{a}$	-	
(iii)		A2,1,0√ [3]	$3, 1-2, 0 \cos \theta$	rrect values, ft	their <i>a</i> , <i>b</i> and	С
$\left(\frac{2}{x}+8\right)^2 - 9 = 1$	35 or $\frac{4}{x^2} + \frac{32}{x} + 55 = 135$	M1	apply fg (not	gf) or replace	x by $\frac{1}{x}$	
$\frac{2}{x} + 8 = 12(\text{or} - 1)$	2) or $80x^2 - 32x - 4 = 0$	A1 M1	correct equativalid method	ion for solving the	eir equation	
x = 0.5 oe, only		A1 [4]	correct answe	er		

we have a weather

Page 10	Mark Scheme IGCSE – October/Novem	ber 20	Syllabus 2012 0606 Mm Minster
120 (i) 3.5	Е	81 [1]	correct answer
(ii) $y^2 + 7 = 2x$ $h^{-1}(x) = \frac{x^2 + 7}{2}$	N A	11 \1 [2]	attempt at inverse, involving squaring correct inverse
(iii) $\frac{3x-4}{x-2} = x, x^2 - x^2$	5x + 4 = 0	11	equate $k(x)$ with x and obtain quadratic equation
(x-4)(x-1) $x = 4 only$	N A	11 1 [3]	solve three term quadratic correct answer
(iv)			
$\frac{3\left(\frac{3x-4}{x-2}\right)-4}{\left(\frac{3x-4}{x-2}\right)-2}$	N A	11 \1	substitute to obtain expression for k^2 correct unsimplified expression
$\frac{3(3x-4)-4(x-3)}{3x-4-2(x-2)}$	2) 2) N	11	multiply numerator and denominator by $(x - 2)$, oe
$5-\frac{4}{x}$	A	1 [4]] correct answer