www.mymathscloud.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

International General Certificate of Secondary Education

MARK SCHEME for the October/November 2012 series

0606 ADDITIONAL MATHEMATICS

0606/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		h h
Page	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0606
	neme Notes s are of the following three types:	1 0606 Thaths Cloud
	Method mark, awarded for a valid method applied to the not lost for numerical errors, algebraic slips or errors usually sufficient for a candidate just to indicate an inter-	in units. However, it is not

Mark Scheme Notes

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{\ }$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

Page 3	Mark Scheme	Syllabus	12 3 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	IGCSE – October/November 2012	0606	Than Mains
The follo	Answer Given on the question paper (so extra chec the detailed working leading to the result is valid)		ots:
BOD	Benefit of Doubt (allowed when the validity of a so clear)	lution may not l	be absolutely

AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
BOD	Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
CAO	Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
ISW	Ignore Subsequent Working
	ignore cubecquent rremaing
MR	Misread
MR PA	

Penalties

- MR 1A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

			4
Page 4	Mark Scheme	Syllabus	·3.
	IGCSE – October/November 2012	0606	

		1	Qx, Ox
1	(a)		18th Schoud
		B1	OUG
	R	B1 [2]	
	(b) (i) $F \subset B$, $B \supset F$, $F \subseteq B$ and $B \supseteq F$, $F \cap B = F$ or $F \cup B = B$	B1 [1]	
	(ii) $S \cap F = \emptyset$, $S \cap F = \{\}$ or $n(S \cap F) = 0$	B1 [1]	
2	(i) 3 or $\frac{3}{1}$	B1 [1]	
	(ii) $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3\sin t}{4\cos^2 t} \left(= \frac{3\sin t}{3} \right)$	M1	M1 correct substitution in $\frac{dy}{dx} = \frac{dy}{dt} \times \frac{dt}{dx}$ o.e.
	$=\frac{3\sin\frac{\pi}{6}}{3}$	DM1	
	= 0.5	A1 [3]	DM1 for use of their '3' and substitution of $\frac{\pi}{6}$.
3	(i) $^{15}C_7 = 6435$	B1 [1]	
	(ii) ${}^6C_2 \times {}^9C_5 = 1890$	M1,A1 [2]	M1 for a correct method
	(iii) No women: ${}^{9}C_{7} = 36$	B1	B1 for ${}^{9}C_{7} = 36$
	6435 - 36 = 6399	M1 A1	M1 for a complete, correct method
4	(i)	[3] B1	B1 for $y = \tan x$
•		B1, B1	$y = 1 + 3\sin 2x$
		[3]	B1 for shape of <u>curve</u> B1 for a 'curve' starting at 1 and finishing at 1 and going between 4 and -2.
	(ii) $\left(\frac{\pi}{4}, 4\right)$ and $\left(\frac{3\pi}{4}, -2\right)$	B1, B1	B1 for each or B1 for both <i>x</i> coordinates
		[2]	correct
	(iii) 3	B1ft [1]	Ft from their (i) or correct

			h	1. 2 20/
Page 5	Mark Scheme	Syllabus	·3.	2
	IGCSE – October/November 2012	0606	20	3. 60°
'-				5

5	(i) 80 β α 320 or 320	B1	B1 for correct triangle Could be implied by subsequent working.
	$\frac{320}{\sin 120^{\circ}} = \frac{80}{\sin \alpha}$	M1	M1 for complete method (sine rule and/or cosine rule) to find α or β
	$\alpha = 12.5^{\circ} \text{ (or } \beta = 47.5^{\circ}\text{)}$	A1	A1 for α (or β)
	Bearing = 042.5° or 043°	A1 [4]	A1 for bearing
	(ii) $\frac{v_r}{\sin 47.5^\circ} = \frac{320}{\sin 120^\circ}$, $v_r = 272.4$	M1	M1 for use of complete method (sine rule and/or cosine rule) to find v_r
	$\operatorname{or} \frac{x}{\sin 120^{\circ}} = \frac{450}{\sin 47.5^{\circ}}$	A1	or x For either $v = 272$ or $x = 529$
	Time = $\frac{450}{272.4}$ or $\frac{528.6}{320}$	DM1	DM1 for $\frac{450}{\text{their velocity}}$
	= 1.65	A1 [4]	or their $\frac{x}{320}$
6	$(p+x)^6 = p^6 + 6p^5x + 15p^4x^2 + 20p^3x^3$		
	(i) $15p^4 = \frac{3}{2} \times 20p^3$, $p = 2$	B1, B1 M1 A1 [4]	B1 for $15p^4$, B1 for $20p^3$ M1 for correct attempt to equate
	(ii) need $p^{6}(1)+6p^{5}(-2)+15p^{4}(1)$ = -80	B1 M1 A1	B1 for both p^6 , $6p^5$ (allow in (i)) M1 for attempt using 3 terms for $\left(1 - \frac{1}{x}\right)^2$ and identifying and adding at least two terms independent of x
		[3]	independent of x

			4	1. 2 30/
Page 6	Mark Scheme	Syllabus	·3.	2
	IGCSE – October/November 2012	0606	1/2	3. E
		-		- CA - W

		70.
7 (i) $\frac{dx}{dt} = \frac{(t^2 + 1) - t(2t)}{(t^2 + 1)^2}$ When $\frac{dx}{dt} = 0$, $t = 1$ so $x = \frac{1}{2}$	M1 A1 DM1	M1 for attempt to differentiate a quotie product A1 all correct, allow unsimplified DM1 for equating to zero and attempt to solve
	A1 [4]	to find t . A1 for $x = \frac{1}{2}$
$\frac{d^2x}{dt^2} = \frac{(t^2+1)^2(-2t) - (1-t^2)4t(t^2+1)}{(t^2+1)^4}$ When $t = 1$, acceleration = -0.5	M1 A1 A1 [3]	M1 for attempt to differentiate a quotient or product to find acceleration A1 correct unsimplified
8 (i) $f(2) = 24 + 20 + 2p + 8 = 0$ p = -26	M1 A1	M1 for use of 2 and equating to zero, or use of comparing coefficients or algebraic long division
a = 3, b = 11, c = -4	B3 [5]	B1 for each of a, b and c
(ii) $(x-2)(3x-1)(x+4)$	M1 A1 [2]	M1 for attempt to obtain 3 factors
9 (i) $AD^2 = 20^2 + 10^2 - 2(20)(10)\cos\frac{5\pi}{6}$	M1 B1	M1 finding AD using cosine rule including square root. B1 for either arc length
Perimeter = $\frac{10\pi}{6} + \frac{20\pi}{6} + 2(29.1)$ = 73.9	DM1 A1 [4]	DM1 for correct plan before evaluation using correct arc lengths and <i>AD</i> Awrt 73.9
(ii) Area = $\frac{1}{2}10^2 \left(\frac{\pi}{6}\right) + \frac{1}{2}20^2 \left(\frac{\pi}{6}\right) + 2\left(\frac{1}{2}(10)(20)\sin\frac{5\pi}{6}\right)$	M1 B1 DM1	M1 for area of triangle using the sine rule, or complete correct method B1 for $\frac{1}{2} 10^2 (\pi/6)$ or $\frac{1}{2} 20^2 (\pi/6)$ DM1 for correct plan before evaluation using
= 231	A1 [4]	correct sector and triangle areas. Awrt 231

Page 7	Mark Scheme	Syllabus
	IGCSE – October/November 2012	0606

							nn	
	Pa	ge 7	Mark Sche			Syllabus	- 'N'	3
			IGCSE – October/No	vember 20	12	0606	21	Day of
10	(i)	$\sec x$ (sec	$5, x = 60^{\circ}, 300^{\circ}$	M1 M1 A1, A1 [4]	M1 for so	e of correct ide lution of quade e correct soluti	ratic in sec or	r cos
		$\frac{\sin^2 x}{\cos^2 x} - \frac{1}{\cos^2 x}$ $\sin^2 x - 2$	$\frac{2}{\cos x} + 1 = 0$ $\cos x + \cos^2 x = 0,$ $5, x = 60^\circ, 300^\circ$		for use of	aling with tan correct identit lution to obtain	y	ectly and
	(ii)		$\frac{1}{5}, \tan 3y = (\pm) \frac{1}{\sqrt{5}}$ $= (\pm) \frac{1}{\sqrt{6}}, \cos 3y = (\pm) \frac{\sqrt{5}}{\sqrt{6}}$	M1		rrectly obtaini square rooting	ng in terms o	of 1 trig
		3y = 0.42,	2.72, etc. 0.907, 1.19, 1.95	M1 A1, A1 [4]				
	(iii)	$\sin\left(z+\frac{\pi}{4}\right)$	$=$ $=$ $\frac{2}{5}$	M1	M1 for de	aling with '2'	and cosec co	rrectly
		$z + \frac{\pi}{4} = 0.4$	4115, 2.730, 6.695	DM1	DM1 for o	dealing with $\frac{7}{2}$	correctly	
		z = 1.94,		A1,A1 [4]		2	+	
11	EIT	HER						
11		$\frac{\mathrm{d}y}{\mathrm{d}x} = 5e^x - \frac{\mathrm{d}y}{\mathrm{d}x} = 5$	$-3e^{-x}$	B1	B1 For co	rrect derivativ	e	
		When $x =$	$=\ln\frac{3}{5}, \frac{dy}{dx} = -2$	B1	B1 for gra	d = -2 from co	orrect workir	ng
			$ \ln\frac{3}{5}, y = 8 $	B1	B1 for $y =$	= 8		
		Tangent:	$y-8=-2\left(x-\ln\frac{3}{5}\right)$	M1	Equation of their 8	of a tangent us	ing their grad	dient and
		When $y =$	$x = 4 + \ln\frac{3}{5} (3.49)$	A1 [5]				
	(ii)	$\int_0^a 5e^x + 3$	$e^{-x} dx = 12$	B1	B1 for co	rrect integratio	n	
		$\left[5e^x-3e^{-1}\right]$	$\begin{bmatrix} x \end{bmatrix}_{0}^{a} = 12$					
		$5e^a-3e^{-a}$		M1	M1 for co	rrect use of lin	nits	
		$5e^{2a}-14e$	$e^a - 3 = 0$	A1 [3]	Answer gi manipulat	iven so need to ion	see some	
	(iii)	$\left(5e^a+1\right)$	$(e^a - 3) = 0$	M1 M1		cognising and	•	•
		$a = \ln 3$,	1.1 or 1.10	A1 [3]				

	Page 8	Mark Sche		12	Syllabus 0606	Thy Mar	13.13.13
11	OR (i) $\frac{dy}{dx} = \frac{(1+x)^{2}}{6e^{2x}}$	$\frac{+e^{2x} \cdot 6e^{2x} - 3e^{2x} \cdot (2e^{2x})}{(1+e^{2x})^2}$	M1 A2,1,0	M1 for atternoon product —1 each er	empt to differenti		3C/01

11	OR

$$\frac{dy}{dx} = \frac{\left(1 + e^{2x}\right) 6e^{2x} - 3e^{2x} \left(2e^{2x}\right)}{\left(1 + e^{2x}\right)^2}$$

$$= \frac{(1+e^{-y})^{6e^{-3e^{-y}}}(1+e^{2x})^2}{(1+e^{2x})^2}$$

$$\therefore A = 6$$

A1

[4]

For 6 obtained from correct working.

(ii) When
$$x = 0$$
, $y = \frac{3}{2}$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3}{2}$$

$$\therefore y - \frac{3}{2} = \frac{3}{2}x$$

B1 for
$$y = \frac{3}{2}$$

B1 for grad = $\frac{A}{4}$

B1ft Ft their
$$y_0$$
 and $\frac{A}{4}$

$$\int \frac{e^{2x}}{(1+e^{2x})^2} dx = \frac{1}{2} \left(\frac{e^{2x}}{(1+e^{2x})} \right) (+c)$$

$$\frac{1}{2} \left[\frac{e^{2x}}{(1+e^{2x})} \right]_0^{\ln 3} = \frac{1}{2} \left(\frac{9}{10} - \frac{1}{2} \right)$$

$$= 0.2$$

A1ft

M1

Ft $\frac{A}{30}$ A1ft [4]

M1 for attempt at 'reverse differentiation'

Ft on their A, i.e. $\frac{3}{A}$ for a correct statement

M1 for correct use of limits