www.mymathscloud.com

## **CAMBRIDGE INTERNATIONAL EXAMINATIONS**

**International General Certificate of Secondary Education** 

# MARK SCHEME for the October/November 2012 series

# 0606 ADDITIONAL MATHEMATICS

**0606/12** Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.



|      |                                                                                                                                                                               | h h                          |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|
| Page | Mark Scheme                                                                                                                                                                   | Syllabus                     |
|      | IGCSE – October/November 2012                                                                                                                                                 | 0606                         |
|      | neme Notes s are of the following three types:                                                                                                                                | 1 0606 Thaths Cloud          |
|      | Method mark, awarded for a valid method applied to the not lost for numerical errors, algebraic slips or errors usually sufficient for a candidate just to indicate an inter- | in units. However, it is not |

#### **Mark Scheme Notes**

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Α Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep\*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol  $\sqrt{\ }$  implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

| Page 3    | Mark Scheme                                                                                               | Syllabus         | 12 3 3 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
|-----------|-----------------------------------------------------------------------------------------------------------|------------------|------------------------------------------|
|           | IGCSE – October/November 2012                                                                             | 0606             | Than Mains                               |
| The follo | Answer Given on the question paper (so extra chec<br>the detailed working leading to the result is valid) |                  | ots:                                     |
| BOD       | Benefit of Doubt (allowed when the validity of a so clear)                                                | lution may not l | be absolutely                            |

| AG       | Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid) |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|
| BOD      | Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)                                              |
| CAO      | Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)                                         |
| ISW      | Ignore Subsequent Working                                                                                                           |
|          | ignore cubecquent rremaing                                                                                                          |
| MR       | Misread                                                                                                                             |
| MR<br>PA |                                                                                                                                     |

### **Penalties**

- MR 1A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through √" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

|        |                               |          | 4 1 300  |
|--------|-------------------------------|----------|----------|
| Page 4 | Mark Scheme                   | Syllabus | · 2      |
|        | IGCSE – October/November 2012 | 0606     | 1/2 3. E |
|        |                               |          |          |

| 1 | (i) $\left  \left( \frac{24}{7} \right) \right  = 25$                                                                                                                                                                           | M1<br>A1<br>[2]        | M1 for a complete method to find and the modulus                                                                                 |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|   | (ii) $4\lambda - \mu = 21$<br>$3\lambda + 2\mu = 2$<br>$\lambda = 4$ and $\mu = -5$                                                                                                                                             | M1<br>DM1<br>A1<br>[3] | M1 for equating like vectors once DM1 for solving simultaneous equations                                                         |
| 2 | (i) $\frac{1}{2} \begin{pmatrix} 1.5 & 1 \\ 1 & 2 \end{pmatrix}$                                                                                                                                                                | B1<br>B1<br>[2]        | B1 for reciprocal of determinant<br>B1 for matrix                                                                                |
|   | (ii) $A = \begin{pmatrix} 2 & -1 \\ -1 & 1.5 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 6 \\ -0.5 & 4 \end{pmatrix}$ $= \frac{1}{2} \begin{pmatrix} 1.5 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 6 \\ -0.5 & 4 \end{pmatrix}$ | M1                     | M1 for correct use of inverse matrix — must be using pre-multiplication with their inverse, must see an attempt to multiply out. |
|   | $=\frac{1}{2}\begin{pmatrix}1&13\\0&14\end{pmatrix}\operatorname{or}\begin{pmatrix}0.5&6.5\\0&7\end{pmatrix}$                                                                                                                   | A2,1,0<br>[3]          | −1 each error                                                                                                                    |

|        |                               |          | 4     | 1       |
|--------|-------------------------------|----------|-------|---------|
| Page 5 | Mark Scheme                   | Syllabus | · 25. | 1       |
|        | IGCSE – October/November 2012 | 0606     | 1/2   | 73.     |
| •      |                               |          | 7     | (C) (C) |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1               |                                                                 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------|
| $3 	 (i) = \frac{\cos \left( + \frac{\sin \left( -\frac{\sin \left( -\frac{\sin \left( -\frac{\sin \left( -\frac{\cos \left( -\frac{\sin \left( -\frac{\sin \left( -\frac{\cos \left( -\frac{\cos \left( -\frac{\sin \left( -\frac{\cos c}{\cos \left( -\frac{\cos c}{\cos c}\right) + \cos c \right) + cos c} \right)} - cosin cincilite cionilite} } ciolite cioilite cioilite} } cioilite cioilite cioilite} } cioilite $ | B1              | B1 for $\cot \theta = \frac{\cos \theta}{\sin \theta}$          |
| $\cos (+\cos^2 (+\frac{[\sin]]^2 ()}{\sin((1+\cos()))}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | M1              | M1 for attempt to add fractions                                 |
| = (("cos" "(" + 1"))/("sin" "(" ("cos"(" -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1              | M1 for use of identity                                          |
| $=\frac{1}{\sin \zeta}=\cos \zeta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M1<br>A1<br>[5] | M1 for algebra/simplification Must see cosec θ for A1           |
| Alternative scheme:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                                                 |
| $=\frac{1}{\tan (1+\sin (1+\cos (1+\cos (1+\cos (1+\cos (1+\cos (1+\cos (1+\cos (1+\cos$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |                                                                 |
| = (("1" "+" "cos" ["(") +" "tan" "(" "" "sin" "(                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                 |                                                                 |
| = ("1" "+" "cos" "(" + " ( ["sin" ] ^=2" "(")/"c                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.71            | M1 for attempting to add fractions                              |
| = ("cos" "(" " + " ["cos" ]   1"2" "(" + " ["sin" ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                 |                                                                 |
| = (("cos" "(" + 1"))/("sin" "(" ("cos" "(" " " + 1"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1              | B1 for $\tan \theta = \frac{\sin \theta}{\cos \theta}$          |
| $=\frac{1}{\sin (}=\cos ec \theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                 |                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1              | M1 for use of identity                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M1<br>A1        | M1 for algebra/simplification<br>Must see cosec $\theta$ for A1 |
| (ii) Gives cosec $\theta = 0.5$ , leads to sin $\theta = 2$ which has no solutions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | B1 [1]          | Needs an explanation                                            |

|        |                               |          | 4   | 1      |
|--------|-------------------------------|----------|-----|--------|
| Page 6 | Mark Scheme                   | Syllabus | ·3. | 2      |
| •      | IGCSE – October/November 2012 | 0606     | 1/2 | 100 To |
|        |                               | •        |     |        |

| 4 (i) $\log_{a}p + \log_{a}q = 9$ $2 \log_{a}p + \log_{a}q = 15$ $\log_{a}p + \log_{a}q = 3$ Or $ \begin{array}{c} a^{0} = pq \\ a^{15} = p^{2}q \\ a^{6} = p \text{ which leads to } \log_{a}p = 6 \end{array} $ All for obth  MI for complete solution of the two equations  All for obth  MI for complete solution of the two equations  All for obth  MI for complete solution of the two equations  All for obtaining both in correct log form  Or $ \begin{array}{c} \log_{a}p^{2}q - \log_{a}pq = 6 \\ \log_{a}\frac{p^{2}q}{pq} = 6, \log_{a}p = 6 \end{array} $ Bl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                            |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------|
| Or $a^{9} = pq$ $a^{15} = p^{2}q$ $a^{6} = p \text{ which leads to } \log_{a}p = 6$ $a^{3} = q \text{ which leads to } \log_{a}q = 3$ Or $\log_{a}p^{2}q - \log_{a}pq = 6$ $\log_{a}p^{2}q - \log_{a}pq = 6$ $\log_{a}p^{2}q - \log_{a}pq = 6$ $\log_{a}p^{2}q = 6, \log_{a}p = 6$ $\log_{a}pq = \log_{a}p + \log_{a}q = 9$ $\text{sol } \log_{a}q = 3$ M1 M1 for $\log_{a}p^{2}q - \log_{a}pq = 6$ B1 B1 for $\log_{a}\frac{p^{2}q}{pq} = 6$ $\log_{a}pq = \log_{a}p + \log_{a}q = 9$ Sol $\log_{a}q = 3$ B1 B1 for $\log_{a}pq = \log_{a}p + \log_{a}q = 9$ A1 M1 for change of both to base a logarithm  [2]  5 Using $x = 6 + 2y$ or $y = \frac{x - 6}{2}$ M1 M1 for reducing to a three term quadratic equated to zero $(y + 6)(y - 2) = 0 \text{ or } (x + 6)(x - 10) = 0$ DM1 DM1 for correct attempt to solve, must be from points of intersection $AB = \sqrt{16^{2} + 8^{2}}$ $= \sqrt{320}$ $, 8\sqrt{5}$ or 17.9  M1 for correct attempt to use Pythag. A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4  | (i)       | $\log_a p + \log_a q = 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1   | 350                                        |
| Or $a^{9} = pq$ $a^{15} = p^{2}q$ $a^{6} = p \text{ which leads to } \log_{a}p = 6$ $a^{3} = q \text{ which leads to } \log_{a}q = 3$ Or $\log_{a}p^{2}q - \log_{a}pq = 6$ $\log_{a}p^{2}q - \log_{a}pq = 6$ $\log_{a}p^{2}q - \log_{a}pq = 6$ $\log_{a}p^{2}q = 6, \log_{a}p = 6$ $\log_{a}pq = \log_{a}p + \log_{a}q = 9$ $\text{sol } \log_{a}q = 3$ M1 M1 for $\log_{a}p^{2}q - \log_{a}pq = 6$ B1 B1 for $\log_{a}\frac{p^{2}q}{pq} = 6$ $\log_{a}pq = \log_{a}p + \log_{a}q = 9$ Sol $\log_{a}q = 3$ B1 B1 for $\log_{a}pq = \log_{a}p + \log_{a}q = 9$ A1 M1 for change of both to base a logarithm  [2]  5 Using $x = 6 + 2y$ or $y = \frac{x - 6}{2}$ M1 M1 for reducing to a three term quadratic equated to zero $(y + 6)(y - 2) = 0 \text{ or } (x + 6)(x - 10) = 0$ DM1 DM1 for correct attempt to solve, must be from points of intersection $AB = \sqrt{16^{2} + 8^{2}}$ $= \sqrt{320}$ $, 8\sqrt{5}$ or 17.9  M1 for correct attempt to use Pythag. A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | ( )       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | B1   | 6/0                                        |
| Or $a^{9} = pq$ $a^{15} = p^{2}q$ $a^{6} = p \text{ which leads to } \log_{a}p = 6$ $a^{3} = q \text{ which leads to } \log_{a}q = 3$ Or $\log_{a}p^{2}q - \log_{a}pq = 6$ $\log_{a}p^{2}q - \log_{a}pq = 6$ $\log_{a}p^{2}q - \log_{a}pq = 6$ $\log_{a}p^{2}q = 6, \log_{a}p = 6$ $\log_{a}pq = \log_{a}p + \log_{a}q = 9$ $\text{sol } \log_{a}q = 3$ M1 M1 for $\log_{a}p^{2}q - \log_{a}pq = 6$ B1 B1 for $\log_{a}\frac{p^{2}q}{pq} = 6$ $\log_{a}pq = \log_{a}p + \log_{a}q = 9$ Sol $\log_{a}q = 3$ B1 B1 for $\log_{a}pq = \log_{a}p + \log_{a}q = 9$ A1 M1 for change of both to base a logarithm  [2]  5 Using $x = 6 + 2y$ or $y = \frac{x - 6}{2}$ M1 M1 for reducing to a three term quadratic equated to zero $(y + 6)(y - 2) = 0 \text{ or } (x + 6)(x - 10) = 0$ DM1 DM1 for correct attempt to solve, must be from points of intersection $AB = \sqrt{16^{2} + 8^{2}}$ $= \sqrt{320}$ $, 8\sqrt{5}$ or 17.9  M1 for correct attempt to use Pythag. A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M1   | M1 for solution of the two equations       |
| Or $a^{9} = pq$ $a^{15} = p^{2}q$ $a^{6} = p \text{ which leads to } \log_{a}p = 6$ $a^{3} = q \text{ which leads to } \log_{a}q = 3$ Or $\log_{a}p^{2}q - \log_{a}pq = 6$ $\log_{a}p^{2}q - \log_{a}pq = 6$ $\log_{a}p^{2}q = 6, \log_{a}p = 6$ $\log_{a}pq = \log_{a}p + \log_{a}q = 9$ $\log_{a}q = 3$ M1 M1 for $\log_{a}p^{2}q - \log_{a}pq = 6$ B1 B1 for $\log_{a}\frac{p^{2}q}{pq} = 6$ B1 B1 for $\log_{a}\frac{p^{2}q}{pq} = 6$ B1 B1 for $\log_{a}pq = \log_{a}p + \log_{a}q = 9$ A1 M1 for change of both to base $a$ logarithm  (ii) $\log_{p}a + \log_{q}a = \frac{1}{\log_{a}p} + \frac{1}{\log_{a}q}, = 0.5$ M1 M1 for attempt to obtain an equation in one variable. $y^{2} + 4y - 12 = 0 \text{ or } x^{2} - 4x - 60 = 0$ M1 M1 for reducing to a three term quadratic equated to zero $(y + 6)(y - 2) = 0 \text{ or } (x + 6)(x - 10) = 0$ DM1 DM1 for correct attempt to solve, must be from points of intersection $AB = \sqrt{16^{2} + 8^{2}}$ $= \sqrt{320}, 8\sqrt{5} \text{ or } 17.9$ M1 M1 for correct attempt to use Pythag. A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    |           | $\log_a p = 6$ and $\log_a q = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A1   | A1 for both                                |
| $a^{9} = pq$ $a^{15} = p^{2}q$ $a^{6} = p \text{ which leads to } \log_{a}p = 6$ $a^{3} = q \text{ which leads to } \log_{a}q = 3$ $A1 \qquad \text{A1 for obtaining both in correct log form}$ Or $\log_{a}p^{2}q - \log_{a}pq = 6$ $\log_{a}\frac{p^{2}q}{pq} = 6, \log_{a}p = 6$ $\log_{a}pq = \log_{a}p + \log_{a}q = 9$ $\text{so } \log_{a}q = 3$ $\text{(ii)}  \log_{p}a + \log_{q}a = \frac{1}{\log_{a}p} + \frac{1}{\log_{a}q}, = 0.5$ $M1 \qquad \text{M1 for } \log_{a}p^{2}q - \log_{a}pq = 6$ $\text{B1} \qquad \text{B1 for } \log_{a}\frac{p^{2}q}{pq} = 6$ $\text{B2} \qquad \text{B1 for } \log_{a}\frac{p^{2}q}{pq} = 6$ $\text{B3} \qquad \text{B1 for } \log_{a}pq = \log_{a}p + \log_{a}q = 9$ $\text{A1 for both}$ $\text{M1 for change of both to base } a \log_{a}ithm$ $\text{M2 for change of both to base } a \log_{a}ithm$ $\text{M3 for reducing to a three term quadratic equated to zero}$ $(y + 6)(y - 2) = 0 \text{ or } (x + 6)(x - 10) = 0$ $\text{DM1 for correct attempt to solve, must be from points of intersection}$ $\text{A2 for each correct pair}$ $\text{A3 for each correct pair}$ $\text{A4 for correct attempt to use Pythag.}$ $\text{A5 for } 17.9$ $\text{A1 Allow in any of these forms}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [4]  |                                            |
| $a^{6} = p \text{ which leads to } \log_{\sigma} p = 6$ $a^{3} = q \text{ which leads to } \log_{\sigma} q = 3$ Al Al for obtaining both in correct log form  Or $\log_{\sigma} p^{2}q - \log_{\sigma} pq = 6$ $\log_{\sigma} \frac{p^{2}q}{pq} = 6, \log_{\sigma} p = 6$ $\log_{\sigma} pq = \log_{\sigma} p + \log_{\sigma} q = 9$ $\log_{\sigma} pq = \log_{\sigma} p + \log_{\sigma} q = 9$ $\log_{\sigma} pq = \log_{\sigma} p + \log_{\sigma} q = 0$ Bl Bl for $\log_{\sigma} pq = \log_{\sigma} p + \log_{\sigma} q = 9$ Al for both  M1, Al [2]  M1 for change of both to base $a$ logarithm  M1 for reducing to a three term quadratic equated to zero  M1 for correct attempt to solve, must be from points of intersection  Al for correct pair  Al for correct attempt to use Pythag.  Al for correct attempt to use Pythag.  Al Al low in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Or |           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |                                            |
| $a^{6} = p \text{ which leads to } \log_{\sigma} p = 6$ $a^{3} = q \text{ which leads to } \log_{\sigma} q = 3$ Al Al for obtaining both in correct log form  Or $\log_{\sigma} p^{2}q - \log_{\sigma} pq = 6$ $\log_{\sigma} \frac{p^{2}q}{pq} = 6, \log_{\sigma} p = 6$ $\log_{\sigma} pq = \log_{\sigma} p + \log_{\sigma} q = 9$ $\log_{\sigma} pq = \log_{\sigma} p + \log_{\sigma} q = 9$ $\log_{\sigma} pq = \log_{\sigma} p + \log_{\sigma} q = 0$ Bl Bl for $\log_{\sigma} pq = \log_{\sigma} p + \log_{\sigma} q = 9$ Al for both  M1, Al [2]  M1 for change of both to base $a$ logarithm  M1 for reducing to a three term quadratic equated to zero  M1 for correct attempt to solve, must be from points of intersection  Al for correct pair  Al for correct attempt to use Pythag.  Al for correct attempt to use Pythag.  Al Al low in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |           | a' = pq                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                            |
| cquations $a^{3} = q \text{ which leads to } \log_{a} q = 3$ Al for obtaining both in correct log form  Or $\log_{a} p^{2}q - \log_{a} pq = 6$ $\log_{a} \frac{p^{2}q}{pq} = 6, \log_{a} p = 6$ Bl for $\log_{a} \frac{p^{2}q}{pq} = 6$ Bl for $\log_{a} pq = \log_{a} p + \log_{a} q = 9$ So $\log_{a} q = 3$ Bl for $\log_{a} pq = \log_{a} p + \log_{a} q = 9$ Al for both  MI for change of both to base $a$ logarithm  The second of th                                                                                                                                                                                                                                                                                                                        |    |           | $a^{6} = p^{2}q$ $a^{6} = a^{6} + b^{6} + b^{$ |      |                                            |
| Or $\log_a p^2 q - \log_a pq = 6$ $\log_a \frac{p^2 q}{pq} = 6, \log_a p = 6$ $\log_a pq = \log_a p + \log_a q = 9$ $\log_a pq = \log_a p + \log_a q = 9$ $\log_a pq = \log_a p + \log_a q = 9$ $\log_a pq = \log_a p + \log_a q = 0$ B1 B1 for $\log_a pq = \log_a p + \log_a q = 9$ A1 for both B1 for change of both to base $a$ logarithm [2] $M1 = \frac{p^2 q}{pq} = 6$ $M1 = \frac{p^2 q}{pq} = 6$ $M2 = \frac{p^2 q}{pq} = 6$ $M3 = \frac{p^2 q}{pq} = 6$ $M4 = \frac{p^2 q}{pq} = 6$ $M3 = \frac{p^2 q}{pq} = 6$ $M4 = \frac{p^2 q}{pq} = 6$ $M3 = \frac{p^2 q}{pq} = 6$ $M4 = \frac{p^2 q}{pq} = 6$ $M1 = \frac{p^2 q}{pq} = 6$ $M2 = \frac{p^2 q}{pq} = 6$ $M3 = \frac{p^2 q}{pq} = 6$ $M4 = \frac{p^2 q}{pq} = 6$ $M1 = \frac{p^2 q}{pq} = \frac{p^2 q}{pq} = 6$ $M1 = \frac{p^2 q}{pq} = \frac{p^2 q}{pq} = \frac{p^2 q}{pq} = \frac{p^2 q}{pq} = p^2 q$ |    |           | $a - p$ which leads to $\log_a p - 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MH   | •                                          |
| Or $\log_a p^2 q - \log_a pq = 6$ $\log_a \frac{p^2 q}{pq} = 6, \log_a p = 6$ $\log_a pq = \log_a p + \log_a q = 9$ $\log_a pq = \log_a p + \log_a q = 9$ $\log_a pq = \frac{1}{\log_a p} + \frac{1}{\log_a p} + \frac{1}{\log_a q} = 0.5$ B1 B1 for $\log_a \frac{p^2 q}{pq} = 6$ B1 B1 for $\log_a pq = \log_a p + \log_a q = 9$ A1 for both  M1, A1 [2]  M1 for change of both to base $a$ logarithm  M1 for attempt to obtain an equation in one variable.  M1 M1 for reducing to a three term quadratic equated to zero  M2 + 4y - 12 = 0 or $x^2 - 4x - 60 = 0$ M1 M1 for correct attempt to solve, must be from points of intersection  M2 M3 for each correct pair  M3 M4 for correct attempt to use Pythag.  M4 M5 for correct attempt to use Pythag.  A5 N5 or 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | equations                                  |
| Or $\log_a p^2 q - \log_a pq = 6$ $\log_a \frac{p^2 q}{pq} = 6, \log_a p = 6$ $\log_a pq = \log_a p + \log_a q = 9$ $\log_a pq = \log_a p + \log_a q = 9$ $\log_a pq = \frac{1}{\log_a p} + \frac{1}{\log_a p} + \frac{1}{\log_a q} = 0.5$ B1 B1 for $\log_a \frac{p^2 q}{pq} = 6$ B1 B1 for $\log_a pq = \log_a p + \log_a q = 9$ A1 for both  M1, A1 [2]  M1 for change of both to base $a$ logarithm  M1 for attempt to obtain an equation in one variable.  M1 M1 for reducing to a three term quadratic equated to zero  M2 + 4y - 12 = 0 or $x^2 - 4x - 60 = 0$ M1 M1 for correct attempt to solve, must be from points of intersection  M2 M3 for each correct pair  M3 M4 for correct attempt to use Pythag.  M4 M5 for correct attempt to use Pythag.  A5 N5 or 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |           | $a^3 = a$ which leads to $\log_a a = 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Δ1   | A1 for obtaining both in correct log form  |
| $\log_a p^2 q - \log_a pq = 6$ $\log_a \frac{p^2 q}{pq} = 6, \log_a p = 6$ $\log_a pq = \log_a p + \log_a q = 9$ $\operatorname{sol} \log_a q = \frac{1}{\log_a p} + \frac{1}{\log_a q}, = 0.5$ B1 B1 for $\log_a \frac{p^2 q}{pq} = 6$ B1 B1 for $\log_a pq = \log_a p + \log_a q = 9$ $\operatorname{Sol} \log_p a + \log_q a = \frac{1}{\log_a p} + \frac{1}{\log_a q}, = 0.5$ M1, A1 [2] M1 for change of both to base $a$ logarithm  M1 for attempt to obtain an equation in one variable.  M2 + 4y - 12 = 0 or $x^2 - 4x - 60 = 0$ M1 for reducing to a three term quadratic equated to zero  M1 for each correct attempt to solve, must be from points of intersection  A1 for each correct pair  A3 for correct attempt to use Pythag.  A4 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |    |           | a q which reads to loga q s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 711  | 741 for obtaining both in correct log form |
| $\log_a \frac{p^2 q}{pq} = 6, \log_a p = 6$ $\log_a pq = \log_a p + \log_a q = 9$ $\operatorname{solog}_a q = 3$ B1 B1 for $\log_a \frac{p^2 q}{pq} = 6$ B1 B1 for $\log_a pq = \log_a p + \log_a q = 9$ A1 for both  M1, A1 [2]  M1 for change of both to base $a$ logarithm  [2]  M1 for attempt to obtain an equation in one variable.  M1 for reducing to a three term quadratic equated to zero  M2 + 4y - 12 = 0 or $x^2 - 4x - 60 = 0$ M1 for correct attempt to solve, must be from points of intersection  M3 for each correct pair  A4 for each correct pair  M1 for correct attempt to use Pythag.  A1 A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Or |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                            |
| $\log_a \frac{p^2 q}{pq} = 6, \log_a p = 6$ $\log_a pq = \log_a p + \log_a q = 9$ $\operatorname{so} \log_a q = 3$ B1 B1 for $\log_a \frac{p^2 q}{pq} = 6$ B1 B1 for $\log_a pq = \log_a p + \log_a q = 9$ A1 for both  M1, A1 [2]  M1 for change of both to base $a$ logarithm  [2]  M1 for attempt to obtain an equation in one variable.  M1 for reducing to a three term quadratic equated to zero  M2 + 4y - 12 = 0 or $x^2 - 4x - 60 = 0$ $(y + 6)(y - 2) = 0 \text{ or } (x + 6)(x - 10) = 0$ DM1 for correct attempt to solve, must be from points of intersection  A1 for each correct pair  A2 A1 for correct attempt to use Pythag.  A1 A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |           | $\log_a p^2 q - \log_a pq = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M1   | M1 for $\log_a p^2 q - \log_a pq = 6$      |
| $\log_a pq = \log_a p + \log_a q = 9$ $\operatorname{so} \log_a q = 3$ B1 a1 B1 for $\log_a pq = \log_a p + \log_a q = 9$ A1 for both  M1, A1 [2]  M1 for change of both to base $a$ logarithm  M1 for attempt to obtain an equation in one variable.  M1 for reducing to a three term quadratic equated to zero  M1 b1 for correct attempt to solve, must be from points of intersection  M3 for each correct pair  A3 for each correct pair  M4 for correct attempt to use Pythag.  A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |           | $p^2q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                            |
| So $\log_a q = 3$ Al A1 for both  (ii) $\log_p a + \log_q a = \frac{1}{\log_a p} + \frac{1}{\log_a q}$ , = 0.5  M1, A1  [2]  M1 for change of both to base $a$ logarithm  Solve, $a = 6 + 2y$ or $b = \frac{x-6}{2}$ M1 M1 for attempt to obtain an equation in one variable.  M1 M2 for reducing to a three term quadratic equated to zero  M2 + 4y - 12 = 0 or $b = 2$ M3 M2 for reducing to a three term quadratic equated to zero  M3 DM1 for correct attempt to solve, must be from points of intersection  A1 A2 for each correct pair  A2 A3 for each correct pair  A3 A1 A3 for correct attempt to use Pythag.  A3 A1 A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |           | $\log_a \frac{1}{pq} = 6$ , $\log_a p = 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B1   | B1 for $\log_a \frac{P}{na} = 6$           |
| So $\log_a q = 3$ Al A1 for both  (ii) $\log_p a + \log_q a = \frac{1}{\log_a p} + \frac{1}{\log_a q}$ , = 0.5  M1, A1  [2]  M1 for change of both to base $a$ logarithm  Solve, $a = 6 + 2y$ or $b = \frac{x-6}{2}$ M1 M1 for attempt to obtain an equation in one variable.  M1 M2 for reducing to a three term quadratic equated to zero  M2 + 4y - 12 = 0 or $b = 2$ M3 M2 for reducing to a three term quadratic equated to zero  M3 DM1 for correct attempt to solve, must be from points of intersection  A1 A2 for each correct pair  A2 A3 for each correct pair  A3 A1 A3 for correct attempt to use Pythag.  A3 A1 A3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | PY                                         |
| So $\log_a q = 3$ Al Al for both  (ii) $\log_p a + \log_q a = \frac{1}{\log_a p} + \frac{1}{\log_a q}$ , $= 0.5$ M1, Al [2]  M1 for change of both to base $a$ logarithm  Sology $a + \log_q a = \frac{1}{\log_a p} + \frac{1}{\log_a q}$ , $= 0.5$ M1 M1 for attempt to obtain an equation in one variable.  M2 $+ 4y - 12 = 0$ or $x^2 - 4x - 60 = 0$ M1 M1 for reducing to a three term quadratic equated to zero  M2 $+ 6)(y - 2) = 0$ or $(x + 6)(x - 10) = 0$ M3 DM1 for correct attempt to solve, must be from points of intersection  M3 $+ 6 + 6 + 2y = 0$ M4 Al for each correct pair Al for each correct pair  M6 $+ 6 + 2y = 0$ Al Al for each correct pair  M8 $+ 6 + 2y = 0$ Al Al for each correct pair  Al Al for correct attempt to use Pythag.  Al Al for correct attempt to use Pythag.  Al Al for each correct pair Al Al Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |           | $\log_a pq = \log_a p + \log_a q = 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                            |
| (ii) $\log_p a + \log_q a = \frac{1}{\log_a p} + \frac{1}{\log_a q}$ , = 0.5  M1, A1 [2]  M1 for change of both to base $a$ logarithm  Solve $a = 6 + 2y$ or $b = \frac{x-6}{2}$ M1 M1 for attempt to obtain an equation in one variable.  M1 M1 for reducing to a three term quadratic equated to zero  M2 + 4y - 12 = 0 or $b = x^2 - 4x - 60 = 0$ M1 M1 for reducing to a three term quadratic equated to zero  M2 DM1 for correct attempt to solve, must be from points of intersection  M3 A1 for each correct pair  A4 A1 for each correct pair  A5 M1 M1 for correct attempt to use Pythag.  A6 A1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | A1   | A1 for both                                |
| 5 Using $x = 6 + 2y$ or $y = \frac{x - 6}{2}$ M1 M1 for attempt to obtain an equation in one variable. $y^2 + 4y - 12 = 0$ or $x^2 - 4x - 60 = 0$ M1 M1 for reducing to a three term quadratic equated to zero $(y + 6)(y - 2) = 0 \text{ or } (x + 6)(x - 10) = 0$ DM1 DM1 for correct attempt to solve, must be from points of intersection $\begin{vmatrix} a & b & b & b \\ b & b & b \\ c & b & b \end{vmatrix}$ $\begin{vmatrix} a & b & b & b \\ c & b & b \\ c & b & b \end{vmatrix}$ $\begin{vmatrix} a & b & b & b \\ c & b & b \\ c & b & b \\ c & b & b \end{vmatrix}$ $\begin{vmatrix} a & b & b & b \\ c & b & b \\$                                                                                                                                    |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                            |
| 5 Using $x = 6 + 2y$ or $y = \frac{x - 6}{2}$ M1 M1 for attempt to obtain an equation in one variable. $y^2 + 4y - 12 = 0$ or $x^2 - 4x - 60 = 0$ M1 M1 for reducing to a three term quadratic equated to zero $(y + 6)(y - 2) = 0 \text{ or } (x + 6)(x - 10) = 0$ DM1 DM1 for correct attempt to solve, must be from points of intersection $\begin{vmatrix} a & b & b & b \\ b & b & b \end{vmatrix}$ $\begin{vmatrix} a & b & b \\ b & b & b \end{vmatrix}$ $\begin{vmatrix} a & b & b \\ b & b & b \end{vmatrix}$ $\begin{vmatrix} a & b & b \\ b & b & b \end{vmatrix}$ $\begin{vmatrix} a & b & b \\ b & b & b \end{vmatrix}$ $\begin{vmatrix} a & b & b \\ b & b & b \end{vmatrix}$ M1 for correct attempt to use Pythag. $\begin{vmatrix} a & b & b & b \\ b & b & b \end{vmatrix}$ $\begin{vmatrix} a & b & b & b \\ b & b & b \end{vmatrix}$ M1 for correct attempt to use Pythag.  A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    | (ii)      | $\log_{n} a + \log_{a} a = \frac{1}{1} + \frac{1}{1} = 0.5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -    | M1 for change of both to base a logarithm  |
| one variable. $y^2 + 4y - 12 = 0$ or $x^2 - 4x - 60 = 0$ M1 M1 for reducing to a three term quadratic equated to zero $(y+6)(y-2) = 0$ or $(x+6)(x-10) = 0$ DM1 DM1 for correct attempt to solve, must be from points of intersection  A1 for each correct pair $AB = \sqrt{16^2 + 8^2}$ $= \sqrt{320}$ , $8\sqrt{5}$ or 17.9  M1 M1 for correct attempt to use Pythag.  A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | ` '       | $\log_a p - \log_a q$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | [2]  |                                            |
| one variable. $y^2 + 4y - 12 = 0$ or $x^2 - 4x - 60 = 0$ M1 M1 for reducing to a three term quadratic equated to zero $(y+6)(y-2) = 0$ or $(x+6)(x-10) = 0$ DM1 DM1 for correct attempt to solve, must be from points of intersection  A1 for each correct pair $AB = \sqrt{16^2 + 8^2}$ $= \sqrt{320}$ , $8\sqrt{5}$ or 17.9  M1 M1 for correct attempt to use Pythag.  A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _  | ** .      | x-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ) (1 |                                            |
| $y^2 + 4y - 12 = 0$ or $x^2 - 4x - 60 = 0$ M1 M1 for reducing to a three term quadratic equated to zero $(y + 6)(y - 2) = 0$ or $(x + 6)(x - 10) = 0$ DM1 DM1 for correct attempt to solve, must be from points of intersection  A1 for each correct pair $AB = \sqrt{16^2 + 8^2}$ $= \sqrt{320}$ , $8\sqrt{5}$ or 17.9  M1 M1 for correct attempt to use Pythag.  A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5  | Usi       | $\log x = 6 + 2y \text{ or } y = \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | MI   |                                            |
| equated to zero $(y+6)(y-2) = 0 \text{ or } (x+6)(x-10) = 0$ DM1 DM1 for correct attempt to solve, must be from points of intersection $A1 = \sqrt{16^2 + 8^2} $ All for each correct pair $A1 = \sqrt{320}, 8\sqrt{5} \text{ or } 17.9$ M1 M1 for correct attempt to use Pythag.  A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    |           | <del>-</del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |      | one variable.                              |
| $(y+6)(y-2) = 0$ or $(x+6)(x-10) = 0$ DM1 DM1 for correct attempt to solve, must be from points of intersection  All for each correct pair $AB = \sqrt{16^2 + 8^2}$ M1 M1 for correct attempt to use Pythag. $AB = \sqrt{320}$ , $B\sqrt{5}$ or 17.9 M1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    | $y^{2} +$ | $4y - 12 = 0$ or $x^2 - 4x - 60 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1   | M1 for reducing to a three term quadratic  |
| leading to $y = -6$ , $y = 2$<br>and $x = -6$ , $x = 10$ A1  A1 for each correct pair $AB = \sqrt{16^2 + 8^2}$ $= \sqrt{320}$ A1  M1 for correct attempt to use Pythag.  A1 A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | equated to zero                            |
| leading to $y = -6$ , $y = 2$<br>and $x = -6$ , $x = 10$ A1  A1 for each correct pair $AB = \sqrt{16^2 + 8^2}$ $= \sqrt{320}$ A1  M1 for correct attempt to use Pythag.  A1 A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                            |
| leading to $y = -6$ , $y = 2$<br>and $x = -6$ , $x = 10$ A1 A1 for each correct pair $AB = \sqrt{16^2 + 8^2}$ $= \sqrt{320}$ A1 M1 for correct attempt to use Pythag. A1 A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |    | (y +      | (6)(y-2) = 0 or $(x+6)(x-10) = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DM1  | _                                          |
| and $x = -6, x = 10$ $AB = \sqrt{16^2 + 8^2}$ $= \sqrt{320}, 8\sqrt{5} \text{ or } 17.9$ A1  M1 for correct attempt to use Pythag.  A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | from points of intersection                |
| and $x = -6, x = 10$ $AB = \sqrt{16^2 + 8^2}$ $= \sqrt{320}, 8\sqrt{5} \text{ or } 17.9$ A1  M1 for correct attempt to use Pythag.  A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |    | 1         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |                                            |
| $AB = \sqrt{16^2 + 8^2}$ $= \sqrt{320} , 8\sqrt{5}  or  17.9$ M1 M1 for correct attempt to use Pythag. A1 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | A1 for each correct pair                   |
| $= \sqrt{320}$ , $8\sqrt{5}$ or 17.9 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | and       | x 0, x = 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Al   |                                            |
| $= \sqrt{320}$ , $8\sqrt{5}$ or 17.9 Allow in any of these forms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |    | , -       | [467 + 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      | 1                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |           | = <b>√320</b> , <b>8√5</b> or 17.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      | Al Allow in any of these forms             |
| I I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [/]  |                                            |

|        |                               |          | h    | 1 2 30/1 |
|--------|-------------------------------|----------|------|----------|
| Page 7 | Mark Scheme                   | Syllabus | ·3.  | 2        |
|        | IGCSE – October/November 2012 | 0606     | 1/2  | 3.       |
|        |                               |          | 1/2~ |          |

|                                            |                                                            | 1         | QX OX                                                                                                                 |
|--------------------------------------------|------------------------------------------------------------|-----------|-----------------------------------------------------------------------------------------------------------------------|
| 6                                          |                                                            | B1        | If sin 15° is not used, then no man available B1 for correct statement of the sine rule                               |
|                                            | or equivalent                                              | M1        | M1 for correct manipulation to obtain $u = \text{an expression in surd form}$                                         |
| $\theta = \frac{2\sqrt{2}}{3\sqrt{2} + 4}$ |                                                            | M1        | M1 for attempt to obtain $2\sqrt{2}$ , $\sqrt{18}\sqrt{2}$ or reasonable attempt at simplification of their numerator |
|                                            |                                                            | M1        | M1 for attempt to rationalise, must see an attempt at simplification.                                                 |
|                                            |                                                            | A1 [5]    |                                                                                                                       |
| $\sin ( = 6 - 4)$                          | $\sqrt{2}$                                                 |           |                                                                                                                       |
| 7 (i) BC, BE,                              | EC: $y - 4 = m(x - 8)$<br>or $y - 8 = m(x - 6)$            | M1        | M1 for attempt to obtain the equation of BC, BE, EC, (gives $y = 20 - 2x$ )                                           |
| AD, AE                                     | $y-4=-\frac{1}{m}$ (x + 5)                                 | M1        | M1 for attempt to obtain the equation of AD, AE, (gives $2y = x + 13$ )                                               |
| For D, 3                                   | y = 8  and  x = 3                                          | B1, A1    | B1 for $y = 8$ , allow anywhere<br>A1 for $x = 3$                                                                     |
|                                            | 40 - 4x = x + 13 or equivalent<br>to $x = 5.4$ , $y = 9.2$ | M1        | M1 for attempt at the point of intersection of <i>BE</i> with AD, not dependent.                                      |
|                                            |                                                            | A1<br>[6] | A1 for both                                                                                                           |
| (ii) Area =                                | $\frac{1}{2} (13+3) \times 4$                              |           |                                                                                                                       |
| or $=\frac{1}{2}\Big _{0}^{2}$             | 3 6 8 -5 3<br>6 8 4 4 8                                    | M1        | M1 for a correct attempt at the area – allow odd arithmetic slip                                                      |
| = 32                                       |                                                            | A1 [2]    |                                                                                                                       |

|        |                               |          | The 1   |
|--------|-------------------------------|----------|---------|
| Page 8 | Mark Scheme                   | Syllabus | · 2     |
|        | IGCSE – October/November 2012 | 0606     | 1/2 /3. |
|        |                               |          | 12. 13. |

|   |      |                                                                                                                             | 1               | 10                                                                                                                                                |
|---|------|-----------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 8 | (i)  | Area = $\frac{1}{2} 18^2 \sin 1.5 - \frac{1}{2} 10^2 (1.5)$                                                                 | M1              | M1 for attempt at area of a sector with $r = 10$                                                                                                  |
|   |      | = 161.594 – 75                                                                                                              | M1              | M1 for attempt at area of triangle with correct lengths used                                                                                      |
|   |      | = 86.6                                                                                                                      | A1 [3]          |                                                                                                                                                   |
|   |      | (or area of triangle = $\frac{1}{2} \times 24.539 \times 13.170$ )                                                          |                 |                                                                                                                                                   |
|   | (ii) | $AC = 15 \text{ or } 10 \times 1.5$<br>$LBD = 36 \sin 0.75$<br>$BD = \sqrt{18^2 + 18^2 - (2 \times 18 \times 18 \cos 1.5)}$ | B1<br>M1        | B1 for $AC$<br>M1 for correct attempt at $BD$ – can be given if seen in (i)                                                                       |
|   |      | $BD = \sqrt{18 + 18 - (2 \times 18 \times 18 \cos 1.5)}$ $= 24.5$                                                           |                 |                                                                                                                                                   |
|   |      | Perimeter = 15 + 24.5 + 16<br>= 55.5                                                                                        | M1<br>A1<br>[4] | M1 for attempt to obtain perimeter                                                                                                                |
| 9 | (a)  | (i)                                                                                                                         | B1<br>B1<br>B1  | B1 for either correct amplitude or period<br>for $y = \sin 2x$<br>B1 for $y = \sin 2x$ all correct<br>B1 for translation of +1 parallel to y-axis |
|   |      |                                                                                                                             | B1<br>[4]       | or correct period for $y = 1 + \cos 2x$<br>B1 for $y = 1 + \cos 2x$ all correct                                                                   |
|   |      | $(ii)  x = \frac{\pi}{4}, \frac{\pi}{2}$                                                                                    | B1, B1 [2]      | Allow in degrees                                                                                                                                  |
|   | (b)  | (i) Amplitude = 5, Period = $\frac{\pi}{2}$ or 90°                                                                          | B1,B1<br>[2]    | B1 for each                                                                                                                                       |
|   |      | (ii) Period = $\frac{\pi}{3}$ or $60^{\circ}$                                                                               | B1 [1]          |                                                                                                                                                   |

|        |                               | "h       | 1 2 30/  |
|--------|-------------------------------|----------|----------|
| Page 9 | Mark Scheme                   | Syllabus | <b>か</b> |
|        | IGCSE – October/November 2012 | 0606     | 1/2 3.   |
|        |                               |          |          |

| <b>10</b> (i) $f\left(\frac{1}{2}\right): \frac{3}{2} + \frac{a}{2} + b = 0$ | M1              | M1 for use of $x = \frac{1}{2}$ and equating to $\sum_{k=0}^{\infty} (x^k)^k$      |
|------------------------------------------------------------------------------|-----------------|------------------------------------------------------------------------------------|
| $f'(x) = 12x^2 + 8x + a$                                                     | M1              | M1 for differentiation                                                             |
| $f'\left(\frac{1}{2}\right): 3+4+a=0$                                        | M1              | M1 for attempt to obtain $a = -7$ from $f'\left(\frac{1}{2}\right)$                |
| Leading to $a = -7$ and $b = 2$                                              | A1<br>A1<br>[5] |                                                                                    |
| (ii) $f(-3) = -49$                                                           | M1<br>A1<br>[2] | M1 for use of $x = -3$ in either the remainder theorem or algebraic long division. |
| (iii) $f(x) = (2x-1)(2x^2+3x-2)$                                             | M1, A1 [2]      | M1 for attempt to obtain quadratic factor                                          |
| (iv) $f(x) = (2x - 1)(2x - 1)(x + 2)$<br>Leading to $x = 0.5, -2$            | B1<br>B1<br>[2] | B1 for each – must be correct from work                                            |

|         |                               |          | n   | 1  |
|---------|-------------------------------|----------|-----|----|
| Page 10 | Mark Scheme                   | Syllabus | ·3. |    |
|         | IGCSE – October/November 2012 | 0606     | 1/2 | 3. |
|         |                               |          | 1/2 |    |

|                                                                                                                                                                        |                | 1/0                                                                                                                                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11 EITHER                                                                                                                                                              |                | 1sc/oug                                                                                                                                                                |
| (i)                                                                                                                                                                    |                |                                                                                                                                                                        |
|                                                                                                                                                                        | M1<br>A2,1,0   | M1 for attempt to differentiate a quotient –1 each error                                                                                                               |
|                                                                                                                                                                        |                | 1 cuch cirol                                                                                                                                                           |
|                                                                                                                                                                        | A1 [4]         |                                                                                                                                                                        |
| $=\frac{10x}{(1+x^2)^2}$                                                                                                                                               |                |                                                                                                                                                                        |
| or                                                                                                                                                                     |                |                                                                                                                                                                        |
| $\frac{\mathrm{d}y}{\mathrm{d}x} 5x^2 (-2x(1+x^2)^{-2}) + (1+x^2)^{-1} 10x$                                                                                            |                |                                                                                                                                                                        |
| (ii) Stationary point at (0, 0)                                                                                                                                        | B1             |                                                                                                                                                                        |
| $\frac{\mathbf{d}^2 y}{\mathbf{d}x^2} = \frac{\left(1 + x^2\right)^2 10 - 10x(4x)\left(1 + x^2\right)}{(1 + x^2)^4}$                                                   | M1             | M1 for a correct attempt to determine the nature of the turning point (allow change of sign method) – just finding the second derivative is not enough.                |
| When $x = 0$ , $\frac{d^2 y}{dx^2}$ is +ve, minimum                                                                                                                    | A1 [3]         | Must have attempted to solve $\frac{\delta}{dx} = 0$<br>If using second derivative, must be either a product or quotient for M1 together with some sort of conclusion. |
| (iii) $\int \frac{x}{(1+x^2)^2} dx = \frac{1}{2} \frac{x^2}{(1+2^x)} (+c)$ $\int_{-1}^2 \frac{x}{(1+x^2)^2} dx = \frac{1}{2} \left[ \frac{4}{5} - \frac{1}{2} \right]$ | B1<br>B1<br>M1 | B1 for $\frac{xx^2}{(1+x^2)}$ , B1 for $\frac{1}{2}\frac{x^2}{(1+x^2)}$<br>M1 for correct use of limits in an attempt at integration                                   |
| = 0.15                                                                                                                                                                 | A1<br>[4]      | attempt at integration                                                                                                                                                 |

|         |                               |          | 4 1    | <b>3</b> α/ |
|---------|-------------------------------|----------|--------|-------------|
| Page 11 | Mark Scheme                   | Syllabus | ·3.    |             |
| _       | IGCSE – October/November 2012 | 0606     | 1/2 /2 | (39         |
| •       |                               | •        |        | 3           |

| OR                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                     | "NSC/OL                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i)                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\frac{dy}{dx} = \frac{(x^2 - 2)2Ax - (Ax^2 + B)2x}{(x^2 - 2)^2}$                       | M1<br>A2,1,0                                                                                                                                                                                                                                                                                                                                                                                                                        | M1 for attempt to differentiate a quotient –1 each error                                                                                                                                                                                                                                                                                                                                                                    |
| $=\frac{2x(Ax^2-2A-Ax^2-B)}{(x^2-2)^2}$                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $=\frac{2x(2A+B)}{(x^2-2)^2}$                                                           | A1 [4]                                                                                                                                                                                                                                                                                                                                                                                                                              | Answer given                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\frac{\mathrm{d}y}{\mathrm{d}x} = (x^2 - 2)^{-1} 2Ax + (-2x)(x^2 - 2)^{-2} (Ax^2 + B)$ |                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (ii) $5 = 2A + B$<br>3 = A + B                                                          | M1                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1 for use of conditions once M1 for use of conditions a second time                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     | and attempt to solve resulting equations                                                                                                                                                                                                                                                                                                                                                                                    |
| Leading to $A = 2$ , $B = 1$                                                            | A1 [3]                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (iii) when $\frac{dy}{dx} = 0, x = 0$                                                   | B1                                                                                                                                                                                                                                                                                                                                                                                                                                  | B1 for correct <i>x</i>                                                                                                                                                                                                                                                                                                                                                                                                     |
| $y = -\frac{1}{2}$                                                                      | <b>∲</b> B1                                                                                                                                                                                                                                                                                                                                                                                                                         | $ ^{\text{h}} B1 \text{ for } y = -\frac{B}{2} $                                                                                                                                                                                                                                                                                                                                                                            |
| $\frac{d^2y}{dx^2} = \frac{(x^2 - 2)^2(-10) - (-10x) 4x(x^2 - 2)}{(x^2 - 2)^4}$         | M1                                                                                                                                                                                                                                                                                                                                                                                                                                  | M1 for a correct attempt to determine the nature of the turning point (allow change of sign method) – just finding the second derivative is not enough.                                                                                                                                                                                                                                                                     |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     | Must have attempted to solve $\frac{dy}{dx} = 0$                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                     | If using second derivative, must be either a product or a quotient for M1 together with some sort of conclusion.                                                                                                                                                                                                                                                                                                            |
| When $x = 0$ , $\frac{d^2 y}{dx^2}$ is -ve : max                                        | A1 [4]                                                                                                                                                                                                                                                                                                                                                                                                                              | A1 for a correct conclusion from completely correct work.                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                         | (i) $\frac{dy}{dx} = \frac{(x^2 - 2)2Ax - (Ax^2 + B)2x}{(x^2 - 2)^2}$ $= \frac{2x(Ax^2 - 2A - Ax^2 - B)}{(x^2 - 2)^2}$ $= \frac{2x(2A + B)}{(x^2 - 2)^2}$ $\frac{dy}{dx} = (x^2 - 2)^{-1}2Ax + (-2x)(x^2 - 2)^{-2}(Ax^2 + B)$ (ii) $5 = 2A + B$ $3 = A + B$ Leading to $A = 2$ , $B = 1$ (iii) when $\frac{dy}{dx} = 0$ , $x = 0$ $y = -\frac{1}{2}$ $\frac{d^2y}{dx^2} = \frac{(x^2 - 2)^2(-10) - (-10x)4x(x^2 - 2)}{(x^2 - 2)^4}$ | (i) $\frac{dy}{dx} = \frac{(x^2 - 2)2Ax - (Ax^2 + B)2x}{(x^2 - 2)^2} \qquad \text{M1}  A2,1,0$ $= \frac{2x(Ax^2 - 2A - Ax^2 - B)}{(x^2 - 2)^2} \qquad \text{A1}  [4]$ $\frac{dy}{dx} = (x^2 - 2)^{-1}2Ax + (-2x)(x^2 - 2)^{-2}(Ax^2 + B)$ (ii) $5 = 2A + B  \text{M1}  \text{M1}$ $\text{Leading to } A = 2, B = 1 \qquad \text{A1}  [3]$ (iii) when $\frac{dy}{dx} = 0, x = 0  \text{B1}$ $y = -\frac{1}{2}         \text$ |