CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.mymathscioud.com MARK SCHEME for the October/November 2012 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

		4	7.
Page 2	Mark Scheme	Svllabus	Mr. M.
y =	IGCSE – October/November 2012	0606	- 'In Q

Mark Scheme Notes

Marks are of the following three types:

- nathscloud.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. А Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following • on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. B2, 1, 0 means that the candidate can earn anything from 0 to 2.

		m	'n.
Page 3	Mark Scheme	Syllabus	· m.
	IGCSE – October/November 2012	0606	1 Jon

		My A Salt
Page 3	Mark Scheme	Syllabus 7, 2
	IGCSE – October/November 2012	0606
The follow	ving abbreviations may be used in a mark scheme or u	sed on the scripts:
AG	Answer Given on the question paper (so extra check the detailed working leading to the result is valid)	ing is needed to ensure that
BOD	Benefit of Doubt (allowed when the validity of a sol clear)	ution may not be absolutely
CAO	Correct Answer Only (emphasising that no "follow the is allowed)	rough" from a previous error
ISW	Ignore Subsequent Working	
MR	Misread	
PA	Premature Approximation (resulting in basically correaccurate)	ect work that is insufficiently
SOS	See Other Solution (the candidate makes a better atte	empt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{~}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

				Mr.
	Page 4	Mark Scheme	e	Syllabus . M
		IGCSE – October/Nove	ember 2012	0606
1	(i) (ii) $3+5x=\pm$	$x^{2}, x = -\frac{1}{5}, -1$	B1 B1 [2] B1, B1 [2]	B1 for shape B1 for 3 and $-\frac{3}{5}$ B1 for each
2	$k-6x = 2x^{2} + 2x^{2} + x(k+6)$ for a tangent <i>k</i> leading to $k^{2} + (k+18)(k+2)$ Alternative: $-6(\frac{-k-6}{4})$ leading to $k^{2} - (k+18)(k+2)$	xk -k=0 $b^{2} = 4ac$ + 20k + 36 = 0 = 0, so k = -2, -18 6 = 4x + k $b = \left(\frac{-k-6}{4}\right) \left(2\left(\frac{-k-6}{4}\right) + k\right)$ + 20k + 36 = 0 (1) = 0, so k = -2, -18	M1 M1 DM1 A1 [4] M1 M1 DM1 A1	M1 for attempt to equate and obtain a 3 term quadratic M1 for use of $b^2 = 4ac$ DM1 for solution of resulting quadratic M1 for equating gradients M1 for substitution of $x = \frac{-k-6}{4}$ DM1 for solution of resulting quadratic
3	(i) $\log_q 2 = \frac{1}{2}$ $\log_q 4 = \frac{1}{2}$ (ii) $\log_q 16q = \frac{4p}{5} + 1$	$\frac{1}{5} p \text{ or equivalent}$ $\frac{2p}{5}$ $= \log_q 16 + \log_q q$	M1 A1 [2] B1, B1 [2]	M1 for attempt to obtain 32 in terms of 2 or 4 B1 for each
4	$5 (u^{2}) - 7 (u) + (5u - 2) (u - 1)$ $5^{x} = 1, x = 0,$ $5^{x} = \frac{2}{5}, x = -0$	2 = 0) = 0 0.569	M1 DM1 B1 M1, A1 [5]	M1 for attempt to obtain a quadratic equation in terms of u or 5^x DM1 for attempt to solve quadratic B1 for $x = 0$ (could be 'spotted') M1 for correct attempt to use logarithms to obtain x .

					hu
	Pa	ae 5	Mark Schem	e	Syllabus 7.7 7
		<u> </u>	IGCSE – October/Nov	ember 2012	0606 42 43
					A Charles and the second secon
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2x\mathrm{c}}{}$	$\frac{\cos 4x - x^2 \left(-4 \sin 4x\right)}{\cos^2 4x}$	B1,M1 A1 [3]	B1 for differentiation of $\cos 4x$ M1 for attempt at differentiation of quotient A1 all else correct
	(ii)	$\partial y \approx \frac{\pi}{2} p,$	-1.57 <i>p</i>	M1 A1 [2]	M1 for attempt to use small changes A1 for correct solution only – must have 2^{nd} term in (i) correct.
6	(i) (ii)	$\left(x + \frac{2}{x^2}\right)^{\prime}$ Independed $(2 \times '60')$	$x^{6} = x^{6} + 12x^{3} + 60$ ent term = $+(-4 \times '12') = 72$	B3 [3] M1 A1 [2]	B1 for each correct term M1 for sum of 2 products (2 × their 60)+(-4 × their 12) A1 for 72
7	(a)	(i) $(3\sqrt{5}) = 53$ (ii) $(-3\sqrt{5})$	$ (7 - 2\sqrt{2})^2 = 45 - 12\sqrt{10} + 8 - 12\sqrt{10} (\sqrt{5} + 2\sqrt{2}) $	B1 B1 [2]	Must be convincing
	(b)	$\frac{6\sqrt{3}+7\sqrt{4\sqrt{3}+5\sqrt{4\sqrt{3}+5\sqrt{4}}}}{4\sqrt{3}+5\sqrt{6}}$ $=-1+\sqrt{6}$	$\frac{\sqrt{2}}{2} \times \frac{4\sqrt{3} - 5\sqrt{2}}{4\sqrt{3} - 5\sqrt{2}}$	M1 DM1 A1, A1	M1 for attempt to rationalise, DM1 for attempt to simplify A1 for each correct
8	(i)	С(13,-2)	[4] B1, B1 [2]	
	(ii)	grad $AC =$ perp. equa $\therefore D(0, -$	$= -\frac{1}{2} \therefore \text{ perp grad } 2$ ation $y + 2 = 2(x - 13)$ 28)	M1 M1 A1	M1 for attempt to find grad of perpendicular M1 for attempt to find equation of perpendicular and hence D
		Area = $\frac{1}{2}$ = 260 Or $\frac{1}{2} \begin{vmatrix} -3 \\ 6 \end{vmatrix}$	$ \sqrt{16^2 + 8^2} \sqrt{13^2 + 26^2} $ $ \begin{vmatrix} 13 & 0 & -3 \\ -2 & -28 & 6 \end{vmatrix} = 260 $	M1 A1 [5]	M1 for attempt to find area of triangle

				hu,
	Page 6	Mark Scheme		Syllabus 20 2
	i ugo o	IGCSE – October/Nove	mber 2012	0606
L				Day the
9	(i) $0.2 \le y \le$	1	B1 [1]	Must be using correct notation
	(ii) $g^{-1}(x) =$	$\frac{1+x}{2x}$	M1 A1 [2]	M1 for a valid method to find inverse A1 must have correct notation
	(iii) $0.2 \le x \le$	1	√B1 [1]	Follow through on their (i)
	(iv) $g^2 = -\frac{1}{(1-x)^2}$	$\frac{1}{1} = 3$	M1	M1 for correct attempt to find g^2
	$2\left(\frac{1}{2}\right)$	$\left(\frac{1}{2x-1}\right) - 1$	DM1	DM1 for equating to 3 and attempt to solve.
	$\frac{2x-1}{3-2x} =$	3 leading to $x = 1.25$	A1 [3]	
10	(i) $ \frac{\sin x}{\sqrt{y}} 0.17 $	0.5 0.71 0.87 0.98 4 4.42 4.73 4.97	B2,1,0	Can be implied by graph
			M1 A1 [4]	M1 for attempt to plot \sqrt{y} against sin x
	(ii) gradient A	1 = 2 allow $(1.8 - 2.2)$	M1,A1	M1 for attempt to calculate the gradient and equate to 4
	vertical ax allow (2.8	this intercept $B = 3$, (-3.2)	B1 [3]	B1 for B
	(iii) $\sin x = 0$. allow (20)	77 , <i>y</i> = 20.5 - 22)	M1,A1 [2]	M1 for valid attempt to obtain <i>y</i>
	(iv) $\sqrt{y} = 3.5$ allow (12.	$, x = 14.5^{\circ}$ 5 - 16.5)	M1,A1 [2]	M1 for a complete method to find x

					4	m.	
	Page 7	Mark Scheme			Syllabus 2. 2 M		
		IGCSE – October/Nove	mber 2012		0606	- Un O	73,
			1				
11	(a) $\sin\left(2x-\frac{1}{2}\right)$	$\left(-\frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$	M1	M1	for dealing with o	cosec	iclour.
	$2x - \frac{\pi}{3} =$	$\frac{\pi}{4}, \frac{3\pi}{4}$	M1	M1	for a correct orde	er of operations	10.COM
	$x = \frac{7\pi}{24},$ (0.916, 1.	$\frac{13\pi}{24}$ 70)	A1, A1 [4]				
	(b) (i) $10\cos^2 y + 5s$	$\sin y \cos y - 5 \sin^2 y = 7$	M1	M1	for expansion		
	$10 + 5 \tan v -$	$5 \tan^2 v = 7 \sec^2 v$	M1	M1	for division by co	\cos^2	
	$10 + 5 \tan y -$	$5\tan^2 y = 7\left(\tan^2 y + 1\right)$	M1	M1	for use of correct	tidentity	
	$12\tan^2 y - 51$ Or	$\tan y - 3 = 0$	A1 [4]				
	$10 - 15 \sin^2 y$	$+5\sin y\cos y = 7$		M1	for expansion and	d use of identity	у
	$3 \sec^2 y - 15 t$	$an^2 y + 5 \tan y = 0$		M1	for division by co	os^2	
	$3(1+\tan^2 y)$	$-15\tan^2 y + 5\tan y = 0$		M1	for use of correct	tidentity	
	Or						
	$15\cos^2 y + 5s$	$\sin y \cos y - 5 = 7$		M1	for expansion and	d use of identity	У
	$15 + 15 \tan y$	$-12\sec^2 y = 0$		M1	for division by co	os^2	
	$15 + 5 \tan y -$	$12\left(1+\tan^2 y\right)=0$		M1	for use of correct	tidentity	
	(ii) $(4 \tan y -$	$(-3)(3\tan y+1)=0$	M1	M1	for attempt to sol	lve quadratic	
	$\tan y = \frac{2}{2}$	$\frac{3}{4}$, $y = 36.9^{\circ}$	A1				
	$\tan y = -$	$-\frac{1}{3}, y = 161.6^{\circ}$	A1 [3]				

			mun.
Page 8	Mark Schem	e	Syllabus The The
	IGCSE – October/Nove	ember 2012	0606
12 EITHER (i) $A(-1, 0)$ $\frac{dy}{dx} = (12)$	and B (2, 0) 2-6x)2(1+x)+(1+x) ² (-6)	B1, B1	thscloud.
$= 2(1 + When \frac{d}{d})$ $\therefore C(1, 2)$	x)(9-9x) $\frac{y}{x} = 0, x = 1 \text{ (max)}$ 24)	M1, A1 M1 A1	M1 for attempt to differentiate a product M1 for attempt to find stationary point
(ii) Area = $6\int_{-1}^{2}$ = $\left[24 + 3\right]$ = 40.5	$\int_{-1}^{2} (12-6x)(1+x)^{2} dx$ $\int_{1}^{2} (2+3x-x^{3}) dx$ $12x+9x^{2}-\frac{3x^{4}}{2} \Big]_{-1}^{2}$ $36-24) - \left(-12+9-\frac{3}{2}\right) \Big]$	[6] M1 DM1, A1 DM1 A1 [5]	M1 for attempt to expand out DM1 for attempt to integrate an expanded out form DM1 for correct use of limits
OR (i) $y = x^3 - \frac{1}{2}$ Passes th c = 30 $y = x^3 - \frac{1}{2}$ (ii) When $\frac{d}{d}$ leading t	$-3x^{2} - 9x(+c)$ nrough (0, 30) leading to $-3x^{2} - 9x + 30$ $\frac{y}{x} = 0, \ 3x^{2} - 6x - 9 = 0$ or $x = -1$ and $x = 3$	M1, A1 M1 A1 [4] M1 A1, A1	M1 for attempt to integrate condone omission of <i>c</i> M1 for attempt to find <i>c</i> Allow here M1 for attempt to set to 0 and solve
(iii) Area = $= \left[\frac{x^4}{4} - \frac{x^4}{4}$	$\int_{-1}^{3} x^{3} - 3x^{2} - 9x + 30 dx$ $= x^{3} - \frac{9x^{2}}{2} + 30x \Big]_{-1}^{3}$ $= \frac{31}{2} + 90 - \left(\frac{1}{4} + 1 - \frac{9}{2} - 30\right)$	[3] M1, A1 DM1 A1	A1 for each M1 for attempt to integrate DM1 for correct use of limits
		[4]	