UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

www.mymathscioud.com MARK SCHEME for the October/November 2007 question paper

0606 ADDITIONAL MATHEMATICS

0606/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2007 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page	2 Mark Scheme	Syllabus 5
	IGCSE – October/November 2007	0606
		Ath As
lark Sch	eme Notes	1SC/0,
Marks	are of the following three types:	94.CO.
М	Method mark, awarded for a valid method applied to th not lost for numerical errors, algebraic slips or errors in u	

Mark Scheme Notes

- Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- А Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

		hun
Page 3	Mark Scheme	Syllabus
	IGCSE – October/November 2007	0606

Page 3	Mark Scheme	Syllabus by						
	IGCSE – October/November 2007	0606						
The following abbreviations may be used in a mark scheme or used on the scripts:								
AG	Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)							
BOD	Benefit of Doubt (allowed when the validity of a solution clear)	ution may not be absolutely	MAN NO					

- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW -1,2 This is deducted from A or B marks when essential working is omitted.
- PA -1 This is deducted from A or B marks in the case of premature approximation.
- S -1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX -1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

					hun	1
Page 4	Mark Scheme				Syllabus .	Zh (
	IGCSE – Octobe	r/Nover	mbe	ər 2007	0606	ath a
$ 1 \mathbf{A} = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}, \mathbf{A} \\ \begin{pmatrix} 1 & -3 \\ 9 & -2 \end{pmatrix} + m \begin{pmatrix} 2 \\ 3 \end{pmatrix} $		M1 A1		Reasonable a All correct	attempt (needs 2 correct)	AUT ANSING AND
	1 + 2 <i>m</i> = <i>n</i> and −3− <i>m</i> =0 → $m = -3$ and $n = -5$			Identity matrix Equating their co.		
2 $\left(\frac{1}{1} - \frac{1}{1} \right)$	$\frac{1}{\cos\theta} = 2\cos \operatorname{ec} \theta \cot \theta$					
$\begin{array}{c c} (1 - \cos\theta & 1 + \cos\theta \\ \text{Manipulation of } \end{array}$,	M1		(1−c)(1+c) in	denominator	
$(1-c)(1+c) = s^2$		B1			attempt at numerator	
$\frac{2\cos\theta}{\sin^2\theta} \Rightarrow 2\cos\theta$	osecθcotθ	M1			f cot and cosec	
$\sin^2 \theta$ All correct		A1		When all corre		
All Correct			[4]		ortuitous answers.	
3 (i) $p = \frac{\sqrt{3}+1}{\sqrt{3}-1}$.	$\rightarrow p = \frac{\sqrt{3}+1}{\sqrt{3}-1} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$	M1		× top and bott		-
3+21	√ <u>2</u> 1	A1	ļ	Denominator	= 2	
$\rightarrow p = \frac{3 + 2\sqrt{3}}{3 - 1}$ (ii) either $p - \frac{1}{p}$	$\frac{\sqrt{3+1}}{-1} = 2 + \sqrt{3}$ $\frac{1}{-2} = 2 + \sqrt{3} - \frac{1}{2 + \sqrt{3}}$	A1	[3]	со		
or $p - \frac{1}{p} = \frac{p}{2\sqrt{3}}$		M1 A1	1 [2]	Complete met	thod. co.	
	$\Theta = {}_{9}C_{4}$ (126) m 6 = ${}_{6}C_{4}$ (15) ther \rightarrow 1890	B1 M1 A1	1 [3]	For either ₉ C ₄ Product of 2		
(ii) One twin inclu To include oth → 1050		M1 DM1 A1	[3]	For 2 _n C _r s. Two times his co	; first answer.	
5 (i) Resultant vel → (240i +100	l = (960i +400j) ÷ 4 0i)	M1 A1		Division of dis	stance by time	
v (still air) =	; (240i +100j) – wind 300i + 40j	M1 A1	[4]		d × 4) then ÷ 4 later ction	
(ii) tanθ = 40 ÷ 300 (→ 7.6°)		M1	ניין		th their 2 components	
\rightarrow Bearing of	f 082º (awrt 82º)	A1	[2]	Not 960i +400	J	

				hun .	
Page 5	Mark Scheme			Syllabus	2
	IGCSE – Octobe	r/Novembe	er 2007	0606	732
6 (i) $\frac{dy}{dx} = \frac{6}{\sqrt{4x+1}}$					Athscio.
$y = \frac{6(4x+1)}{\frac{1}{2}}$ Uses (6,20) ($y = 3\sqrt{4x+1}$	$\rightarrow c = 5$	B1 B1 M1 A1 [4]	For all correct Uses (6,20) in	$-\frac{1}{2}$	ATT A STIPS
(ii) Perp to −½ :	= 2	M1	Use of m ₁ m ₂ = co on y-value	=-1, with attempt to solve , using $x = 2$	
$\frac{6}{\sqrt{4x+1}} = 2$	$\rightarrow x = 2, y = 14$	A1√			
	-½(x − 2) or 2y+x=30 and (30, 0)	M1 A1 [4]	Correct metho	od for line	
7 (i) $2^{2x} = 2^{x+2} + 2^{2x} = u^2$ Solution of qu $2^x = 5 \rightarrow x = 2.32$	$2^{x+2} = 4u$ uadratic $u^2 = 4u+5$ $x = lg5 \div lg2$	B1 B1 M1 M1 A1 [5]	From $2^{x} = k$ to	od of solution of quad=0 o x by correct method nore than one answer	
$2 \times \frac{1}{2} + \dots$ $\log_5(7y - 3)$		B1 B1 M1 A1 [4]	For ½ For RHS = 3 From log₅ to 5	$5^p = k.$ co	
$f(2) = 8-4$ $f(1) = 4f(2)$ $\rightarrow k = 32$	2	M1 A1 M1 A1 [4]	Both correct,	= 1 or 2, not −1 or −2. unsimplified. tion – allow if 4 on LHS	
Divides by $\rightarrow x^2 - 6x^2$	first solution $\rightarrow x = -2$ (x - his first solution)	M1 A1 M1 DM1 A1	Correct metho	od for soln of quadratic	
	2	[5]		inieu.	

			huy	1. Sal	
U	Scheme		Syllabus . The	24	
IGCSE – Octobe	r/Novembe	<u>er 2007</u>	0606	S PATA S	
				TING .	
9 (i) x 2 4 6 8 10 y 14.4 10.8 11.2 12.6 14.4 xy 29 43 67 101 144 x^2 4 16 36 64 100	M1 A1 [2]	-	o do. aph – 5 points are in line.	A VASENS SINSCIOUD.COM	
(ii) Gradient 1.2 (±0.1) 'y' intercept (±2)	B1 B1	co co		1	
$\rightarrow y = 1.2x + \frac{24}{x}$	M1 A1 [4]		xy = (their grad)x + (their intercept)		
(iii) From graph $xy = 83 \rightarrow x^2 = 49$ Valid method to obtain y y = 11.6 - 12.2	M1 M1 A1 [3]	Reads on vertical axis at 83 Valid method to obtain <i>y</i> co			
10 (i) <i>BC</i> = 2(10sin0.4) = 7.79	M1 A1 [2]	Any correct m	nethod – cos rule ok.		
(ii) $\angle ABC = \frac{1}{2}(\pi - 0.8) = 1.17 \text{ rads}$ Arc $CD = 7.79 \times 1.17$, Arc $BC = 10 \times 0.8$ $\rightarrow P = \text{sum of the arcs} + BD (=7.79)$ $\rightarrow P = 24.9$	B1 M1 M1 A1 [4]	Anywhere in t Use of <i>s=rθ</i> ir Overall plan – co.			
(iii) Area sector $BDC = \frac{1}{2}(7.79)^2 \times 1.17$ Area segment on $BC = \frac{1}{2}.10^2(0.8 - \sin 0.8)$	M1 B1	Use of $A = \frac{1}{2}r^2$ B1 for $0.5(10)$	$e^{2}\theta$ for sector BDC $0)^{2} 0.8$		
\rightarrow Shaded area = 39.6 or 39.7	B1 A1 [4]	B1 for 0.5(10 co	$\left(\right)^{2}\sin 0.8$		
11 EITHER				1	
(i) $y = xe^{2x}$ $d/dx(e^{2x}) = 2e^{2x}$ $\rightarrow dy/dx = e^{2x} + 2x e^{2x}$	B1 M1A1	-	even if product not used t formula for " <i>uv</i> ". co		
$\rightarrow d^2 y/dx^2 = 2e^{2x} + 2e^{2x} + 4xe^{2x}$	M1A1 [5]	Use of produc	ct formula again. co.		
(ii) $dy/dx = 0$ when $1+2x = 0 \rightarrow x = -\frac{1}{2}$	M1 A1	Sets his dy/d	x to 0 and tries to solve.		
$\rightarrow y = -\frac{1}{2}e^{-1} = -\frac{1}{2e}.$	A1 [3]	co – ag – bew	vare fortuitous results.		
(iii) If $x = -\frac{1}{2} \rightarrow +\text{ve result}$ $\rightarrow \text{Minimum}$	M1 A1	Looks at sign. Correct deduc	ction from correct <i>x</i> .		
(or gradient goes -,0,+) (or y value to left or right of $(-\frac{1}{2}) > -\frac{1}{2e}$)	[2]	(or by any oth	ner valid method)		

				my						
Page 7	Mark Scheme			Syllabus .	7.					
	IGCSE – Octobe	r/Novembe	er 2007	0606	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~					
	Park the									
11 OR					15C/0.					
(i) $d/dx(\ln x) = 1$ $\frac{d}{dx}\left(\frac{\ln x}{x^2}\right) = \frac{d}{dx}\left(\frac{\ln x}{x^2}\right)$	$\frac{dx}{x - 2x \ln x}{x^4} = \frac{1 - 2 \ln x}{x^3}$	B1 M1 A1 [3]		ven if quotient not used t quotient formula	ATH SCIOUD.COM					
(ii) dy/dx = 0 —	$\rightarrow \ln x = \frac{1}{2} \rightarrow x = \sqrt{e}$	M1 A1	Sets his dy/dx	to 0 and tries to solve.						
$\rightarrow y = \ln(\sqrt{e})$		A1	co – ag – bew	vare fortuitous results.						
		[3]								
(iii) $\frac{\ln x}{x^2} = \int \left(\frac{1}{x^3}\right)^{1/2}$	$\int dx - \int \frac{2\ln x}{x^3} dx$	M1	Recognition the reverse of diff	nat integration is the erentiation.						
50	$\frac{\sqrt{2} \times \left[\int \left(\frac{1}{x^3}\right) dx - \frac{\ln x}{x^2} \right]}{\frac{x^{-2}}{-2} - \frac{\ln x}{x^2} + c$	B1 B1 A1 [4]	B1 for $\frac{1}{2}$. B1 for $(x^{-2}) \div$ All ok includin							
DM1 for quadration										
Formula.		Facto								
Must be correct				quadratic into 2 factors.						
 – ignore arithmet 	tic and algebraic slips.	Each	factor then equ	lated to 0.						