Cambridge IGCSE ${ }^{\text {TM }}$

ADDITIONAL MATHEMATICS

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the May/June 2023 series for most Cambridge IGCSE, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded positively:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit is given for valid answers which go beyond the scope of the syllabus and mark scheme, referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently, e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:
Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Maths-Specific Marking Principles

Unless a particular method has been specified in the question, full marks may be awarded for any correct method. However, if a calculation is required then no marks will be awarded for a scale drawing.

2 Unless specified in the question, answers may be given as fractions, decimals or in standard form. Ignore superfluous zeros, provided that the degree of accuracy is not affected.

3 Allow alternative conventions for notation if used consistently throughout the paper, e.g. commas being used as decimal points.

4 Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored (isw).

5 Where a candidate has misread a number in the question and used that value consistently throughout, provided that number does not alter the difficulty or the method required, award all marks earned and deduct just 1 mark for the misread.

Recovery within working is allowed, e.g. a notation error in the working where the following line of working makes the candidate's intent clear.

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

M Method marks, awarded for a valid method applied to the problem.
A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.

B Mark for a correct result or statement independent of Method marks.
When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

```
Abbreviations
awrt answers which round to
cao correct answer only
dep dependent
FT follow through after error
isw ignore subsequent working
nfww not from wrong working
oe or equivalent
rot rounded or truncated
SC Special Case
soi seen or implied
```

Question	Answer	Marks	Guidance
1(a)	$5\left(x-\frac{7}{5}\right)^{2}-\frac{9}{5}$	3	B1 for $5(x \pm b)^{2}$ B1 for $\left(x-\frac{7}{5}\right)^{2}$ B1 for $-\frac{9}{5}$
	Alternative By comparing coefficients: $\begin{aligned} & a\left(x^{2}+2 b x+b^{2}\right)+c=5 x^{2}-14 x+8 \\ & 2 a b x=-14 x \\ & a b^{2}+c=8 \end{aligned}$	(3)	B1 for $a=5$ B1 for $b=\frac{-14}{10}$ oe B1 for $c=\frac{-18}{10}$ oe
1(b)	$\left(\frac{7}{5},-\frac{9}{5}\right)$	2	FTB1 for each, follow through on their a and b from (a) or SC1 if differentiation is used in their (a) or restarted in (b) $\frac{\mathrm{d} y}{\mathrm{~d} x}=10 x-14=0 \text { then }\left(\frac{7}{5},-\frac{9}{5}\right)$
1(c)		3	B1 for the correct shape. Must have the parabola part of the curve with maximum in the first quadrant and cusps on the x-axis. Ignore labelling of their maximum point if incorrect coordinates B1 for $\left(\frac{4}{5}, 0\right)$ and (2,0), must have a correct shape in the first quadrant. B1 for $(0,8)$ must have a correct shape.
1(d)	$0<k<\frac{9}{5}$	2	B1FT follow through from 0 and their $-b$ in part (a)
2(a)	$\begin{aligned} & \mathrm{p}^{\prime}(x)=3 a x^{2}+14 x+b \\ & \mathrm{p}^{\prime \prime}(x)=6 a x+14 \text { leading to } 3 a+14=32 \\ & a=6 \end{aligned}$	2	M1 for attempt to differentiate twice and substitute $x=\frac{1}{2}$

Question	Answer	Marks	Guidance
2(b)	$\mathrm{p}\left(\frac{4}{3}\right): 80+4 b+3 c=0$ oe	M1	Must have 3 terms. For use of $x=\frac{4}{3}$, at least once and equating to 0 with an attempt at simplification leading to an equation in b and c only Allow one sign error.
	$\mathrm{p}(-1):-b+c=6$ oe	M1	Must have 3 terms. For use of $x=-1$ and equating to 7 with an attempt at simplification leading to an equation in b and c only
	$b=-14, c=-8$	2	M1 dep on both previous M marks and attempt to solve simultaneously to obtain both b and c A1 for both
2(c)	$(3 x-4)\left(2 x^{2}+5 x+2\right)$	2	B1 for two terms correct in the quadratic factor. Allow if seen as a quotient in long division. For both marks, need to see both factors together. $\left(x-\frac{4}{3}\right)\left(6 x^{2}-15 x+6\right)$ from synthetic method gets 0 marks unless recovered.
2(d)	$(3 x-4)(2 x+1)(x+2)$	B1	Must be all integers
3(a)	Mid-point (6, -5)	B1	
	Gradient of $A B=-\frac{5}{2}$	B1	
	Perpendicular gradient $\frac{2}{5}$	M1	For their perp gradient
	$\begin{aligned} & -9+5=\frac{2}{5}(x-6) \text { oe } \\ & x=-4 \end{aligned}$	2	Dep M1 for attempt at the equation of the perpendicular bisector with their mid-point and their perpendicular gradient and use of $y=-9$
3(b)	(16, -1)	2	B1 for each, FT on 12 - their a for the x-coordinate.
4(a)	$\begin{aligned} & \text { Area under graph }=800 \\ & \frac{1}{2}(10 \times 10)+(10 \times 10)+\frac{1}{2}(10(10+V))+ \\ & \frac{15 V}{2}=800 \end{aligned}$	M1	For attempt to find the area, allow one error and one omission.
	$V=48$	A1	

Question	Answer	Marks	Guidance
4(b)	(-) $\frac{\text { their } V}{15}$	M1	Allow omission of negative sign.
	$-\frac{16}{5} \mathrm{~ms}^{-2} \text { oe }$	A1	FT on their V but must be negative.
5(a)	$\begin{aligned} & (5 \sqrt{3}-6)^{2}+(5 \sqrt{3}+6)^{2}-2(5 \sqrt{3}-6) \\ & (5 \sqrt{3}+6) \cos 120^{\circ} \text { soi } \end{aligned}$	M1	For the correct use of the cosine rule Condone missing brackets if intention is clear
	$75+36-60 \sqrt{3}+75+36+60 \sqrt{3}+75-36$	M1	M1 Dep must see sufficient detail to be sure that a calculator is not being used. This is the minimum acceptable $75+36-60 \sqrt{3}+75+36+60 \sqrt{3}+39$
	261	A1	Maybe implied by $\sqrt{261}$
	$3 \sqrt{29}$	A1	
5(b)	$\frac{2+5 \sqrt{5}}{4}=\frac{1}{2}(3+2 \sqrt{5}) \times Q R \times \sin 30^{\circ}$ soi	M1	For the correct use of the area of the triangle. Condone missing brackets if intention is clear
	$\frac{2+5 \sqrt{5}}{3+2 \sqrt{5}} \times \frac{3-2 \sqrt{5}}{3-2 \sqrt{5}} \text { or } \frac{2+5 \sqrt{5}}{3+2 \sqrt{5}} \times \frac{-3+2 \sqrt{5}}{-3+2 \sqrt{5}}$	M1	M1 dep for a correct attempt to rationalise their $Q R$.must be the same two terms in the numerator and denominator to rationalise
	$\begin{aligned} & \frac{6+15 \sqrt{5}-4 \sqrt{5}-50}{9-20} \\ & \frac{11 \sqrt{5}-44}{-11} \end{aligned}$	M1	M1 dep, must see sufficient detail to be sure that a calculator is not being used. This is the minimum acceptable $\frac{6+15 \sqrt{5}-4 \sqrt{5}-50}{-11}$
	$4-\sqrt{5}$	A1	

Question	Answer	Marks	Guidance
6(a)	$\frac{\frac{\cos \theta}{\sin \theta}+\frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos \theta}} \text { soi }$	2	B1 for $\tan \theta$ and $\cot \theta$ in terms of \sin and cos. B1 for $\sec \theta=\frac{1}{\cos \theta}$
	$\frac{\cos ^{2} \theta+\sin ^{2} \theta}{\sin \theta \cos \theta} \times \cos \theta \text { soi oe }$	M1	For dealing with the fractions in the numerator.
	$\frac{1}{\sin \theta} \times \operatorname{cosec} \theta \text { cso }$	A1	For correct use of $\cos ^{2} \theta+\sin ^{2} \theta=1$ to obtain the given answer.
	$\frac{\frac{1}{\tan \theta}+\tan \theta}{\frac{1}{\cos \theta}}=\frac{1+\tan ^{2} \theta}{\tan \theta} \times \cos \theta \text { soi oe }$	(2)	B1 for $\sec \theta=\frac{1}{\cos \theta}$ M1 for dealing with the fractions in the numerator.
	$\frac{\sec ^{2} \theta}{\tan \theta} \times \cos \theta$	(B1)	For correct use of $\tan ^{2} \theta+1=\sec ^{2} \theta$
	$\frac{1}{\sin \theta} \times \operatorname{cosec} \theta$ cso	(A1)	For correct use of $\tan \theta$ and $\sec ^{2} \theta$ to obtain the given answer.
6(b)	$\left(\frac{1}{\sin \frac{\phi}{3}}\right)^{2}=2$ or $\sin \frac{\phi}{3}= \pm \frac{1}{\sqrt{2}}$ soi or $\tan \frac{\phi}{3}= \pm 1$ soi	B2	B1 for \pm missing
	$-405^{\circ},-135^{\circ}, 135^{\circ}, 405^{\circ}$	4	M1 for one correct positive or negative solution of their $\sin \frac{\phi}{3}=k$ A1 for another correct solution M1Dep for one negative or positive solution A1 for another correct solution and no extras in the range.
7(a)(i)	6435	B1	Must be evaluated not just ${ }^{15} C_{8}$
7(a)(ii)	With family of 4:330	B1	Must be evaluated not just ${ }^{11} C_{4}$ or implied by a correct answer
	Without family of 4: 165	B1	Must be evaluated not just ${ }^{11} C_{8}$ or implied by a correct answer
	Total: 495	B1	

Question	Answer	Marks	Guidance
7(b)	$\begin{aligned} & \frac{(n+9) \times n!}{(n-10)!}=\frac{\left(n^{2}+243\right)(n-1)!}{(n-1-9)!} \\ & n(n+9)=n^{2}+243 \text { oe } \end{aligned}$	2	B1 for either ${ }^{n} P_{10}=\frac{n!}{(n-10)!} \text { or }{ }^{n} P_{10}=\frac{(n-1)!}{(n-1-9)!}$ B1 dep for $n(n+9)=n^{2}+243$
	$n=27$	B1	
8(a)	$\frac{(2 x+1) \times \frac{1}{3} \times 3(3 x-4)^{-\frac{2}{3}}-2(3 x-4)^{\frac{1}{3}}}{(2 x+1)^{2}} \mathrm{oe}$ or by using the product rule $\begin{aligned} & \frac{1}{3} \times 3 \times(3 x-4)^{-\frac{2}{3}} \times(2 x+1)^{-1}+-2 \times \\ & (2 x+1)^{-2}(3 x-4)^{\frac{1}{3}} \end{aligned}$	3	B1 for $\frac{1}{3} \times 3 \times(3 x-4)^{-\frac{2}{3}}$ oe M1 for an attempt to differentiate a quotient. A1 for all terms other than $\frac{1}{3} \times 3 \times(3 x-4)^{-\frac{2}{3}}$ correct. Allow unsimplified.
	$\frac{(3 x-4)^{-\frac{2}{3}}}{(2 x+1)^{2}}((2 x+1)-2(3 x-4))$	M1	M1 dep for attempt to factorise, must be in the form $\frac{(3 x-4)^{-\frac{2}{3}}}{(2 x+1)^{2}}[(a x+1)-b(3 x-4)]$
	$\frac{9-4 x}{(2 x+1)^{2}(3 x-4)^{\frac{2}{3}}}$	A1	
8(b)	(2.25, 0.255)	2	B1 FT for their x-coordinate only. Do not allow FT if they score M0 in part (a)
9(a)	$n=57$ cso	3	B1 for $\frac{n}{2}(2 \ln q+3(n-1) \ln q)$ oe soi Allow if in indices form i.e.: $\frac{n}{2}\left(\ln q^{2}+(n-1) \ln q^{3}\right)$ B1 for $3 n^{2}-n-9690=0$ oe soi
9(b)	Common ratio $=p^{-2 x}$	B1	Allow unsimplified
	nth term $=p^{3 x}\left(p^{-2 x}\right)^{n-1}$ soi	B1	Allow unsimplified
	$p^{(5-2 n) x}$	B1	

Question	Answer	Marks	Guidance
9(c)	$\text { Common ratio }=\frac{4}{3} \cos ^{2} 3 \theta$	B1	Allow unsimplified. Must be convinced it is the common ratio not just writing the first term e.g. $r=$ or seeing $\frac{\frac{16}{9} \cos ^{4} 3 \theta}{\frac{4}{3} \cos ^{2} 3 \theta}$
	$\begin{aligned} & \frac{4}{3} \cos ^{2} 3 \theta\left({ }^{*}\right)-1 \text { or } \\ & \frac{4}{3} \cos ^{2} 3 \theta\left({ }^{*}\right) 1 \text { or oe soi } \\ & \frac{4}{3} \cos ^{2} 3 \theta\left(^{*}\right) 0 \end{aligned}$	B1	
	$\begin{aligned} & \cos 3 \theta\left({ }^{*}\right) \frac{\sqrt{3}}{2} \text { or } \\ & \cos 3 \theta\left({ }^{*}\right)-\frac{\sqrt{3}}{2} \text { or soi } \\ & \cos 3 \theta\left(^{*}\right) 0 \end{aligned}$	B1	
	$3 \theta\left({ }^{*}\right) \frac{5 \pi}{6}$ and $3 \theta\left({ }^{*}\right) \frac{\pi}{6}$ soi	B1	Seeing $\frac{5 \pi}{18}$ or $\frac{\pi}{18}$ implied the first 3 marks
	$\frac{\pi}{18}<\theta \leqslant \frac{5 \pi}{18}$	B1	
10(a)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=2 \times 3(3 x+1) \ln (3 x+1)+\frac{3(3 x+1)^{2}}{3 x+1}$ Simplified to: $\frac{\mathrm{d} y}{\mathrm{~d} x}=3(3 x+1)(1+2 \ln (3 x+1))$	3	B1 for $\frac{3}{3 x+1}$ M1 for attempt to differentiate a product A1 for all terms other than $\frac{3}{3 x+1}$ correct. Allow unsimplified.
10(b)	$k(3 x+1)^{2} \ln (3 x+1)$ soi	B1	
	$\int(3 x+1) \mathrm{d} x=\frac{3 x^{2}}{2}+x(+c)$	B1	May be a multiple May be seen as $\frac{1}{3} \times \frac{1}{2} \times(3 x+1)^{2}$
	$\frac{1}{6}(3 x+1)^{2} \ln (3 x+1)-\frac{3 x^{2}}{4}-\frac{x}{2}+c$	B2	B1 for two correct algebraic terms For B2 must have ($+c$)

