

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS Paper 2 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

May, Mynathscloud.com

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2017 Page 2 of 7

0606/23	Cambridge IGCSE – Mark Scheme PUBLISHED May, May, May, May, May, May, May, May,		
Question	Answer	Marks	Guidance
1(a)	$\log_7 2.5 = 2x + 5 \text{ or } \log_7 \left(\frac{2.5}{7^5}\right) = 2x$ or $(2x + 5)\log 7 = \log 2.5$	M1	correct first anti-logging step
	$[x =] \frac{\log_7 2.5 - 5}{2}$ or $\frac{1}{2} \log_7 \left(\frac{2.5}{7^5}\right) = x$ or $x = \frac{1}{2} \left(\frac{\log 2.5}{\log 7} - 5\right)$	M1	isolates x
	-2.26(4)	A1	
1(b)	$5^2 p^{-3} q^{\frac{5}{4}}$ oe	ВЗ	B1 for each term If B0 then allow M1 for numerator of $125q^{\frac{3}{2}}$ or denominator of $5p^3q^{\frac{1}{4}}$
2(i)	B and C with valid reason	B2	B1 for one graph and valid reason or both graphs and no reason
2(ii)	B only with valid reason	B2	B1 for graph <i>B</i> or valid reason
3	$[m=]\frac{13-5}{1-0.2}$ or 10 soi	M1	or $13 = m + c$ and $5 = 0.2m + c$ and subtracting/substituting to solve for m or c , condone one error
	$Y-13 = their \ 10(X-1)$ or $Y-5 = their \ 10(X-0.2)$ or $13 = their \ 10+c$ or $5 = their \ 10 \times 0.2+c$	M1	or using <i>their m</i> or <i>their c</i> to find <i>their c</i> or <i>their m</i> , without further error
	$\sqrt[3]{y} = (their \ m)\frac{1}{x} + (their \ c) \text{ or}$ $\sqrt[3]{y} = (their \ m)\left(\frac{1}{x} - 1\right) + 13 \text{ or}$ $\sqrt[3]{y} = (their \ m)\left(\frac{1}{x} - 0.2\right) + 5$	M1	their m and c must be validly obtained
	$y = \left(\frac{10}{x} + 3\right)^3$ or $y = \left(10\left(\frac{1}{x} - 1\right) + 13\right)^3$ or $y = \left(10\left(\frac{1}{x} - 0.2\right) + 5\right)^3$ cao, isw	A1	

Question Answer Marks Guidance $4(a)(i)$ $\left(-\frac{4}{3}\right)$ B1 $4(a)(i)$ $\sqrt{11^2 + (-15)^2}$ or better M1 $\frac{1}{\sqrt{346}} \left(-\frac{11}{-15}\right)$ A1 $4(b)$ $\overline{OR} - \overline{OP} + \frac{3}{4} \overline{PQ}$ soi M1 or $\overline{OR} - \overline{OQ} - \frac{1}{4} \overline{PQ}$ soi $[\overline{OR} =] \mathbf{p} + \frac{3}{4} (\mathbf{q} - \mathbf{p})$ M1 or $[\overline{OR} =] \mathbf{q} - \frac{1}{4} (\mathbf{q} - \mathbf{p})$ $[\overline{OR} =] \frac{1}{4} \mathbf{p} + \frac{3}{4} \mathbf{q}$ oe A1 $5(a)$ $(9 \times 8 \times 7 \times 6 \times 1) + (8 \times 8 \times 7 \times 6 \times 1)$ soi M2 M1 for one correct product of the sum 5712 A1 $5(b)$ ${}^{9}C_4 \times {}^{5}C_4 + {}^{9}C_3 \times {}^{5}C_5$ oe M2 M1 for one correct product of the sum 6 $64 = 2^n$ M1 $n = 6$ A1 $their 6(2)^{theor(6-1)} \times (-a) = -16b$ oe M1 $their 6(2)^{theor(6-1)} \times (-a) = -16b$ oe M1 $their 6\times (6-1)/2 (2)^{theor(6-2)} \times (-a)^2 = 100b$ oc M1 $a = 5$ A1 $b = 60$ A1	0606/23	Cambridge IGCSE – Mark Scheme PUBLISHED Answer Marks Guidance B1		
$4(a)(ii) \qquad \sqrt{11^2 + (-15)^3} \text{ or better} \qquad \mathbf{M1}$ $\frac{1}{\sqrt{346}} \binom{11}{-15} \qquad \mathbf{A1}$ $4(b) \qquad \overline{OR} = \overline{OP} + \frac{3}{4} \overline{PQ} \text{ soi} \qquad \mathbf{M1} \text{ or } \overline{OR} = \overline{OQ} - \frac{1}{4} \overline{PQ} \text{ soi}$ $\overline{\left[\overline{OR} = \right]} \mathbf{p} + \frac{3}{4} \mathbf{q} - \mathbf{p} \qquad \mathbf{M1} \text{ or } \overline{\left[\overline{OR} = \right]} \mathbf{q} - \frac{1}{4} (\mathbf{q} - \mathbf{p})$ $\overline{\left[\overline{OR} = \right]} \frac{1}{4} \mathbf{p} + \frac{3}{4} \mathbf{q} \text{ oe} \qquad \mathbf{A1}$ $5(a) \qquad (9 \times 8 \times 7 \times 6 \times 1) + (8 \times 8 \times 7 \times 6 \times 1) \text{ soi} \qquad \mathbf{M2} \qquad \mathbf{M1} \text{ for one correct product of the sum}$ $5712 \qquad \mathbf{A1}$ $5(b) \qquad {}^{9}C_{4} \times {}^{5}C_{4} + {}^{9}C_{3} \times {}^{5}C_{5} \text{ oe} \qquad \mathbf{M2} \qquad \mathbf{M1} \text{ for one correct product of the sum}$ $\overline{\left[630 + 84 = 1714 \qquad \mathbf{A1}\right]}$ $6 \qquad 64 = 2^{n} \qquad \mathbf{M1}$ $n = 6 \qquad \mathbf{A1}$ $their 6(2)^{their(6-1)} \times (-a) = -16b \text{ oe} \qquad \mathbf{M1}$ $their \frac{6 \times (6-1)}{2} (2)^{their(6-2)} \times (-a)^{2} = 100b \text{ oe} \qquad \mathbf{M1}$ $attempts to solve \qquad \mathbf{DM1} \qquad dep \text{ on both M1 marks being awarded; must have correctly or correct FT eliminated one unknown}$	Question	Answer	Marks	Guidance
4(b) $ \overline{QR} = \overline{OP} + \frac{3}{4}\overline{PQ} \text{ soi} $ $ \overline{QR} = \overline{OP} + \frac{3}{4}\overline{PQ} \text{ soi} $ $ \overline{QR} = \overline{QP} - \frac{1}{4}\overline{PQ} \text{ soi} $ $ \overline{QR} = \overline{QQ} - \frac{1}{4}\overline{PQ} \text{ soi} $ $ \overline{QR} = \overline{QQ} - \frac{1}{4}\overline{PQ} \text{ soi} $ $ \overline{QR} = \overline{QQ} - \frac{1}{4}\overline{PQ} \text{ soi} $ $ \overline{QR} = \overline{QQ} - \frac{1}{4}\overline{PQ} \text{ soi} $ $ \overline{QR} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QR} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} \text{ soi} $ $ \overline{QQ} = \overline{QQ} - \frac{1}{4}\overline{QQ} $	4(a)(i)	$\begin{pmatrix} -4 \\ 3 \end{pmatrix}$	B1	COM
4(b) $\overline{OR} = \overline{OP} + \frac{3}{4}\overline{PQ}$ soi \overline{MI} or $\overline{OR} = \overline{OQ} - \frac{1}{4}\overline{PQ}$ soi $\overline{OR} = \overline{QQ} - \frac{1}{4}\overline{QQ}$ soi $\overline{OR} = \overline{QQ} - \frac{1}{4}\overline{PQ}$ soi $\overline{OR} = \overline{QQ} - \frac{1}{4}\overline{QQ}$ soi	4(a)(ii)	$\sqrt{11^2 + (-15)^2}$ or better	M1	
$\overline{OR} = \overline{OP} + \frac{PQ}{4} \operatorname{sol}$ $\overline{OR} = \overline{OQ} - \frac{PQ}{4} \operatorname{sol}$ $\overline{OR} = \overline{QQ} - \frac{1}{4} \operatorname{pol}$ $\overline{OR} = \overline{QQ} - \frac{1}{4} \operatorname{qol}$ $\overline{OR} = \overline{QQ} - \frac{1}{4} qol$		$\frac{1}{\sqrt{346}} \binom{11}{-15}$	A1	
$[OR =]\mathbf{p} + \frac{1}{4}(\mathbf{q} - \mathbf{p})$ or $[OR =]\mathbf{q} - \frac{1}{4}(\mathbf{q} - \mathbf{p})$ $[OR =]\frac{1}{4}\mathbf{p} + \frac{3}{4}\mathbf{q} \text{ oe}$ A1 $(9 \times 8 \times 7 \times 6 \times 1) + (8 \times 8 \times 7 \times 6 \times 1) \text{ soi}$ M2 M1 for one correct product of the sum 5712 A1 $5(b)$ ${}^{9}C_{4} \times {}^{5}C_{4} + {}^{9}C_{3} \times {}^{5}C_{5} \text{ oe}$ M2 M1 for one correct product of the sum $[630 + 84 =]714$ A1 6 $64 = 2^{n}$ M1 $n = 6$ A1 $their 6(2)^{their(6-1)} \times (-a) = -16b \text{ oe}$ M1 $their \frac{6 \times (6-1)}{2}(2)^{their(6-2)} \times (-a)^{2} = 100b \text{ oe}$ A1 attempts to solve $DM1$ $dep \text{ on both M1 marks being awarded; must have correctly or correct FT eliminated one unknown}$ $a = 5$ A1	4(b)	$\overrightarrow{OR} = \overrightarrow{OP} + \frac{3}{4}\overrightarrow{PQ}$ soi	M1	or $\overrightarrow{OR} = \overrightarrow{OQ} - \frac{1}{4}\overrightarrow{PQ}$ soi
		$\left[\overrightarrow{OR} = \right]\mathbf{p} + \frac{3}{4}(\mathbf{q} - \mathbf{p})$	M1	or $\left[\overline{OR} = \right] \mathbf{q} - \frac{1}{4} (\mathbf{q} - \mathbf{p})$
5712 $5(b)$ ${}^{9}C_{4} \times {}^{5}C_{4} + {}^{9}C_{3} \times {}^{5}C_{5} \text{ oe}$ $[630 + 84 =] 714$ 6 $64 = 2^{n}$ $n = 6$ $their 6(2)^{their (6-1)} \times (-a) = -16b \text{ oe}$ $attempts to solve$ $M1$ $a = 5$ $M2$ $M1$ $A1$ $M1$ $A1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ $M1$ M		$\left[\overline{OR} = \right] \frac{1}{4}\mathbf{p} + \frac{3}{4}\mathbf{q} \text{ oe}$	A1	
	5(a)	$(9\times8\times7\times6\times1) + (8\times8\times7\times6\times1) \text{ soi}$	M2	M1 for one correct product of the sum
$[630 + 84 =]714$ $6 \qquad 64 = 2^{n}$ $n = 6$ $their 6(2)^{their(6-1)} \times (-a) = -16b \text{ oe}$ $their \frac{6 \times (6-1)}{2} (2)^{their(6-2)} \times (-a)^{2} = 100b \text{ oe}$ $attempts to solve$ $DM1$ $dep on both M1 marks being awarded; must have correctly or correct FT eliminated one unknown a = 5 A1$		5712	A1	
6 $64 = 2^n$ M1 $n = 6$ A1 $their 6(2)^{their(6-1)} \times (-a) = -16b$ oe M1 $their \frac{6 \times (6-1)}{2}(2)^{their(6-2)} \times (-a)^2 = 100b$ oe M1 attempts to solve DM1 dep on both M1 marks being awarded; must have correctly or correct FT eliminated one unknown $a = 5$ A1	5(b)	${}^{9}C_{4} \times {}^{5}C_{4} + {}^{9}C_{3} \times {}^{5}C_{5}$ oe	M2	M1 for one correct product of the sum
$n = 6$ $their 6(2)^{their(6-1)} \times (-a) = -16b \text{ oe}$ $their \frac{6 \times (6-1)}{2} (2)^{their(6-2)} \times (-a)^2 = 100b \text{ oe}$ $attempts to solve$ $DM1$ $dep on both M1 marks being awarded; must have correctly or correct FT eliminated one unknown a = 5 A1$		[630 + 84 =] 714	A1	
their $6(2)^{their(6-1)} \times (-a) = -16b$ oe their $\frac{6 \times (6-1)}{2} (2)^{their(6-2)} \times (-a)^2 = 100b$ oe attempts to solve DM1 dep on both M1 marks being awarded; must have correctly or correct FT eliminated one unknown $a = 5$ A1	6	$64 = 2^n$	M1	
their $\frac{6 \times (6-1)}{2} (2)^{their(6-2)} \times (-a)^2 = 100b$ oe attempts to solve DM1 dep on both M1 marks being awarded; must have correctly or correct FT eliminated one unknown $a = 5$ A1	l i	n=6	A1	
attempts to solve $ \begin{array}{c c} \hline $	ı	$their 6(2)^{their(6-1)} \times (-a) = -16b$ oe	M1	
must have correctly or correct FT eliminated one unknown $a = 5$ A1		their $\frac{6 \times (6-1)}{2} (2)^{their(6-2)} \times (-a)^2 = 100b$ oe	M1	
		attempts to solve	DM1	must have correctly or correct FT
b = 60 A1		a = 5	A1	
		b = 60	A1	

Question	Answer	Marks	Guidance
7(i)	$k(1+4x)^9$	M1	
	$4\times10(1+4x)^9$ or better	A1	
	$(1+4x)^{10}(their - \sin x) + \cos x \left(their \left(4 \times 10 \times \left(1+4x\right)^{9}\right)\right)$	M1	clearly applies product rule
	$(1+4x)^{10}(-\sin x) + \cos x \left(4 \times 10 \times (1+4x)^9\right)$	A1	all correct
7(ii)	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\mathrm{e}^{4x-5} \right) = 4 \mathrm{e}^{4x-5} \text{ soi}$	B1	
	$\frac{\mathrm{d}}{\mathrm{d}x}(\tan x) = \sec^2 x \mathrm{soi}$	B1	
	clearly applies correct form of quotient rule $\frac{\tan x \left(their \ 4e^{4x-5}\right) - e^{4x-5} \left(their \ sec^2 \ x\right)}{\left(\tan x\right)^2}$	M1	or correct form of product rule to $e^{4x-5}(\tan x)^{-1}$ $4e^{4x-5}(\tan x)^{-1} + e^{4x-5}(\tan x)^{-2} \times \sec^2 x$
	$\frac{\tan x (4e^{4x-5}) - e^{4x-5} (\sec^2 x)}{(\tan x)^2} \text{ isw}$	A1	all correct
8(i)	$\frac{\pi}{3}$	B1	
	6 [cm]	B1	
8(ii)	[major arc =] $\left(2\pi - their \frac{\pi}{3}\right) their r$	M1	
	$10\pi + 6$ cao	A1	
8(iii)	$\frac{1}{2}(their 6)^2 \left(2\pi - their \frac{\pi}{3}\right)$	M1	$\frac{1}{2}(their 6)^2 \left(their \frac{\pi}{3}\right)$
	$\frac{1}{2}(their 6)^2 \sin\left(their \frac{\pi}{3}\right)$	M1	$\frac{1}{2}(their 6)^2 \sin\left(their\frac{\pi}{3}\right)$
	Sector + triangle	M1	$\pi \times their6^2$ – (Sector – triangle)
	$30\pi + 9\sqrt{3}$	A1	

0606/23	0606/23 Cambridge IGCSE – Mark Scheme May, PUBLISHED		
Question	Answer	Marks	Guidance
9(i)	$\frac{y}{9} = \sqrt{x-1} \text{ with attempt to swop } x \text{ and } y \text{ at}$ some point or $\frac{x}{9} = \sqrt{y-1}$	M1	Guidance Attempt to swop; may be in later work that contains an error
	$\left[\mathbf{f}^{-1}(x) = \right] \left(\frac{x}{9}\right)^2 + 1 \text{ oe}$	A1	condone $y =$ etc; must be a function of x
	x > 0	B1	
9(ii)	f(51)	M1	or $fg(x) = 9\sqrt{x^2 + 1}$
	$9\sqrt{50}$ oe	A1	
9(iii)	$[gf(x) =] (9\sqrt{x-1})^2 + 2$	M1	
	[gf(x) =]81(x-1) + 2 or better	A1	
	their $(81x - 79) = 5x^2 + 83x - 95 \rightarrow$ their $(5x^2 + 2x - 16[=0])$	M1	provided <i>their</i> ($81x - 79$) of the form $ax + b$ for non-zero a and b
	1.6 oe only	A1	must disregard other solution
10(a)	$\sin x = 0.5$, $\sin x = -0.5$	M1	
	$\frac{\pi}{6}$, $-\frac{\pi}{6}$, $\frac{5\pi}{6}$, $-\frac{5\pi}{6}$ oe	A2	A1 for any correct pair of angles if M0 then SC1 for a correct pair of angles
10(b)	$2y + 15 = \tan^{-1}\left(\frac{1}{3}\right) \text{ soi}$	M1	
	18.43(49) and 198.43(49)	M1	
	1.7, 91.7	A2	A1 for each

Question	Answer	Marks	Guidance
10(c)	Uses $\cot^2 z = \csc^2 z - 1$ oe	M1	for using correct identity or identities to obtain an equation in terms of a single trigonometric ratio
	$2\csc^{2} z + 7\csc z - 4 = 0 \Rightarrow$ $(2\csc z - 1)(\csc z + 4)$	DM1	for dealing with quadratic
	$[\sin z = 2] \sin z = -\frac{1}{4}$	M1	
	194.5, 345.5	A2	A1 for each
11(i)	$5 + \sqrt{10x} = \frac{5x + 20}{4} \rightarrow 20 + 4\sqrt{10x} = 5x + 20$	M1	or better; equates and solves as far as clearing the fraction
	$\left[\frac{x}{\sqrt{x}}\right] = \sqrt{x} = \frac{4\sqrt{10}}{5} \text{ oe}$	M1	Simplifies as far as $\sqrt{x} = \cdots$
	x = 6.4 cao	A1	squares and simplifies to 6.4
	[y=]13	B1	
11(ii)	(area of trapezium =) their 57.6	B1	FT $x = their$ 6.4, $y = their$ 13 using any valid method
	$\int_0^{6.4} \left(5 + \sqrt{10x}\right) \mathrm{d}x$	M1	
	$\int (10x)^{\frac{1}{2}} dx = k (10x)^{\frac{3}{2}} \text{ or}$	M1	or $\int \sqrt{10}x^{\frac{1}{2}} dx = k \sqrt{10}(x)^{\frac{3}{2}}$
	$\left[5x + \frac{2(10x)^{\frac{3}{2}}}{3\times10}\right]$	A1	or $\left[5x + \frac{2(10)^{\frac{1}{2}}(x)^{\frac{3}{2}}}{3}\right]$
	their $\left[5(6.4) + \frac{2(10 \times 6.4)^{\frac{3}{2}}}{3 \times 10} \right] - their 57.6$ oe	M1	limits used correctly or correct FT and subtraction of trapezium; $their \frac{992}{15} - their 57.6$
	$\frac{128}{15}$ or 8.53 oe	A1	allow 8.5333333 rot to 4 or more sf