

Cambridge International Examinations

Cambridge International General Certificate of Secondary Education

ADDITIONAL MATHEMATICS Paper 2 MARK SCHEME Maximum Mark: 80 Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

			P. W. W.
Page 2	Mark Scheme	Syllabus	P. Mary
	Cambridge IGCSE – May/June 2016	0606	22 4/70 15
Abbrevi	ations		SCIOUD SCION
awrt	answers which round to		3

Abbreviations

answers which round to awrt cao correct answer only

dependent dep

follow through after error FTignore subsequent working isw

oe or equivalent

rounded or truncated rot

SC Special Case seen or implied soi

without wrong working www

Ç	Question	Answer	Marks	Guidance
1	(i)	$(2k)^2 - 4(1)(4k - 3)$ [< 0] Correct completion to given inequality $k^2 - 4k + 3 < 0$ isw	M1 A1	clear attempt at $b^2 - 4ac$
	(ii)	Critical values 1 and 3 soi $1 < k < 3$ as final answer	M1 A1	May be implied by incorrect inequalities
2	(i)	Clear attempt at quotient rule or equivalent product rule $\left[\frac{dy}{dx} = \right] \frac{14}{(3-x)^2}$ or $\left[\frac{dy}{dx} = \right] \frac{14}{x^2 - 6x + 9}$ cao or correct simplified equivalent	M1	allow recovery from bracketing errors or omissions if implied in correct work to the correct answer
	(ii)	$[y = 9] x = 2$ $\frac{0.07}{\delta x} \approx \left(their \frac{dy}{dx} \Big _{x=2} \right) oe$ $0.005 oe$	B1 M1 A1	condone $\frac{0.07}{\delta x} = \left(their \frac{dy}{dx}\Big _{x=2}\right)$ not from wrong working; answer only does not score
3		Any one of: $\begin{bmatrix} {}^{6}C_{0} \times {} \end{bmatrix}^{7}C_{3} + {}^{6}C_{1} \times {}^{7}C_{2}$ or $35 + 126$ or ${}^{13}C_{3} - {}^{6}C_{2} \times {}^{7}C_{1} - {}^{6}C_{3}$ or $286 - 105 - 20$	M2	M1 for $\begin{bmatrix} {}^{6}C_{0} \times \end{bmatrix} {}^{7}C_{3}$ or ${}^{6}C_{1} \times {}^{7}C_{2}$ or ${}^{13}C_{3} - {}^{6}C_{2} \times {}^{7}C_{1}$ or ${}^{13}C_{3} - {}^{6}C_{3}$ or ${}^{6}C_{2} \times {}^{7}C_{1} + {}^{6}C_{3}$ or for the numerical equivalent of one of these calculations
		161	A1	If M0 then B3 for answer only of 161

			.7, 2
Page 3	Mark Scheme	Syllabus	P. Jn Mary
_	Cambridge IGCSE – May/June 2016	0606	22 Aths

Question	Answer	Marks	Guidance
4 (i)	$2(2)^3 - 3(2)^2 + 2q + 56 = 0$ with one correct interim step leading to $q = -30$	B1	allow for only $16 - 12 + 2q + 56 = 0$ q = -30
			NB = 0 must be seen or may be implied by e.g. $-60 = 2q$ or $60 = -2q$;
			or convincingly showing $2(2)^3 - 3(2)^2 - 30(2) + 56 = 0$; allow for only 16 - 12 + 2(-30) + 56 = 0
			or correct synthetic division at least as far as $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
			then $q = -30$
(ii)	$2x^{2} + x - 28$ $(x-2)(2x-7)(x+4)$	B2 M1	B1 for any two terms correct For factorising the correct equation; condone = 0; condone $(2x-7)(x+4)$ only for M1 but for A1 must see all 3 factors in this part; do not allow $\left(x-\frac{7}{2}\right)$
	x = 2, x = -4, x = 3.5 oe	A1	not from wrong working; answers only do not score
5 (i)	(2, 8)	B1, B1	
(ii)	$\frac{their8 - 0}{their2 - p} = -2 \text{ or better}$	M1	Condone $\frac{their8 - 0}{their2 - p} = \frac{-1}{their \text{ gradient } AB} \text{ oe}$
	[<i>p</i> =] 6	A1	men 2 – p men gradient Ab

			3, 2
Page 4	Mark Scheme	Syllabus	P. J. Mark
	Cambridge IGCSE – May/June 2016	0606	22 Phys. 75

		1	
Question	Answer	Marks	Guidance
(iii)	$[MB =] \sqrt{(6 - their 2)^2 + (10 - their 8)^2}$	M1	implied by $[MB =]\sqrt{20}$ or
	or $\left[\frac{1}{2}AB = \right] \frac{1}{2}\sqrt{(6-2)^2 + (10-6)^2}$		$\left[\frac{1}{2}AB = \right]\frac{1}{2}\sqrt{80} \text{ e.g. 4.47},$
	soi $[MC =] \sqrt{(their 2 - their p)^2 + (their 8 - 0)^2}$		or $[MC =]\sqrt{80}$ or e.g. 8.94 or 63.4° or equivalents
	$ \operatorname{or} \tan[] = \frac{8}{4} \operatorname{soi} $		
	or $4.47^2 = 8.94^2 + 10^2 - 2(8.94)(10)\cos[]$ or $8.94^2 = 10^2 + 10^2 - 2(10)(10)\cos[]$		
	$\sin^{-1}\left(\frac{\sqrt{20}}{10}\right) \text{ oe soi}$	M1	$\operatorname{or} \cos^{-1} \left(\frac{\sqrt{80}}{10} \right)$
			$\arctan^{-1}\left(\frac{\sqrt{20}}{\sqrt{80}}\right)$
			or $\tan^{-1}\left(\frac{4}{8}\right)$
			or $90 - \tan^{-1}\left(\frac{8}{4}\right)$
			or equivalent complete correct method; implies first M1
	26.56 to 26.6° or 0.4636 to 0.464 rads cao	A1	Not from wrong working
6 (i)	Valid explanation	B1	e.g. arc length is greater than the radius or 7 is greater than 5
(ii)	$7 = 5\theta$ $\theta = 1.4 \text{ oe}$	M1 A1	implies M1
(iii)	$\frac{1}{2} \times 5^2 \times their1.4$ oe	M1	
	17.5oe	A1	

			mn n
Page 5	Mark Scheme	Syllabus	P. Mar Sing
	Cambridge IGCSE – May/June 2016	0606	22 PH/SOL

Question	Answer	Marks	Guidance
(iv)	[triangle area =] $\frac{1}{2} \times 5^2 \times \sin their$ 1.4 or 12.3 to 12.32 or for [$\frac{1}{2} \times \text{base} \times \text{height}$ =] $\frac{1}{2} \times 6.4[4] \times 3.8[2]$ oe	M1	may be embedded in a difference calculation
	5.18 to 5.2 inclusive	A1	implies M1
7 (i)	$ \begin{pmatrix} 12 & 15 \\ 9 & 6 \end{pmatrix} + \begin{pmatrix} 4 & 2 \\ 1 & 3 \end{pmatrix} soi $	M1	if no method shown, may be implied by their answer with at least 2 correct elements
	$\begin{pmatrix} 16 & 17 \\ 10 & 9 \end{pmatrix}$	A1	
(ii)	$det A = 4 \times 2 - 3 \times 5 = -7$ or det B = 4 × 3 - 2 × 1 = 10	B1	allow for e.g. $(4 \times 2 - 3 \times 5) \times (4 \times 3 - 2 \times 1) = -70$
			or $\det \mathbf{A} = 8 - 15 = -7$
	(21 23)		or $\det \mathbf{B} = 12 - 2 = 10$
	$\mathbf{AB} = \begin{pmatrix} 21 & 23 \\ 14 & 12 \end{pmatrix}$	B2	or B1 for two elements correct
	$\det(\mathbf{AB}) = 21 \times 12 - 23 \times 14 = -70$	B1	allow for $det(\mathbf{AB}) = 252 - 322 = -70$
			For full marks must conclude that $\det \mathbf{AB} = \det \mathbf{A} \times \det \mathbf{B}$ or show the product $-7 \times 10 = -70$
			otherwise max 3 marks
(iii)	$\frac{1}{their \det \mathbf{AB}} \times their \begin{pmatrix} 12 & -23 \\ -14 & 21 \end{pmatrix} \text{ isw}$	B2	correct or correct FT ; FT their AB and their non-zero det AB ;
			their AB must be an attempt at a matrix product e.g. $\begin{pmatrix} 16 & 10 \\ 3 & 6 \end{pmatrix}$
			$\mathbf{B1} \text{ for } \frac{1}{\text{their } \det \mathbf{AB}} \times \text{their} \left(\right)$
			or for $k \times their \begin{pmatrix} 12 & -23 \\ -14 & 21 \end{pmatrix}$

			N. B.	3
Page 6	Mark Scheme	Syllabus	Pelly	The state of the s
	Cambridge IGCSE – May/June 2016	0606	22	THE VIEW
				00.

Question	Answer	Marks	Guidance
8	Eliminates y e.g. $4 + \frac{5}{15x + 10} + \frac{3}{x} = 0$ or eliminates x e.g. $4 + \frac{5}{y} + \frac{3}{(y - 10)/15} = 0$	M1	allow even after incorrect rearrangement of the equation of the curve (dependent on resulting equation still in terms of x and y); condone substitution of e.g. $\frac{y+10}{15}$
	Rearrange to a 3-term quadratic $60x^2 + 90x + 30 = 0$ oe or $4y^2 + 10y - 50 = 0$ oe	M1 A1	condone sign slips/arithmetic slips
	Factorise or solve 3-term quadratic	M1	1
	$x = -\frac{1}{2}, x = -1 \text{ isw}$	A1	or $y = 2\frac{1}{2}$, $y = -5$
	$y = 2\frac{1}{2}$, $y = -5$ isw	A1	or $x = -\frac{1}{2}$, $x = -1$
			If final A marks not awarded then A1 for a correct <i>x</i> , <i>y</i> pair
9 (a)	$\frac{x^2}{2} + x - \frac{1}{x}(+c) \text{isw}$	В3	B1 for each term allow $\frac{x^2}{2} + x + \frac{x^{-1}}{-1}(+c)$ isw for B3
(b) (i)	$k\cos(5x + \pi) \text{ where } k < 0$ or $\frac{\cos(5x + \pi)}{5}$	M1	
	$\frac{-\cos(5x+\pi)}{5}(+c)$	A1	
(ii)	$\frac{-\cos(5(0) + \pi)}{5} - \frac{-\cos(5(-\frac{\pi}{5}) + \pi)}{5}$ or $\frac{-\cos(\pi)}{5} - \left(\frac{-\cos(0)}{5}\right)$	M1	correct substitution of the given limits into their expression of the form $k \cos(5x + \pi)$, dep on M1 in (b)(i)
	0.4 oe	A1	answer only does not score
10 (a)	2 = p - q and 14 = 4p - 2q oe $p = 5$ $q = 3$	M1 A1 A1	
(b)	Factorise $10^{2x} - 2(10^x) - 24 = 0$ or factorise $u^2 - 2u - 24 = 0$	M1	or applies the formula or completes the square
	$10^x = 6$ $x = \lg 6 \text{cao as final answer}$	A1 A1	ignore $10^x = -4$ for this mark or exact equivalent

			mn 12
Page 7	Mark Scheme	Syllabus	P. May
	Cambridge IGCSE – May/June 2016	0606	22 9th

Question	Answer	Marks	Guidance
(c)	$\frac{x+1}{x} = 2^3 \text{ oe www}$	M2	combines logs and anti-logs or B1 for one correct log move
			$e.g. \log_2\left(\frac{x+1}{x}\right) = 3$
			or $\log_2(x+1) - \log_2(x) = \log_2 8$
	1		or $\log_2(x+1) - \log_2(x) = 3\log_2 2$
	$x = \frac{1}{7}$ or 0.143 or 0.1428 to 0.1429	A1	
11 (a)	Valid method	M1	Completing the square as far as
			e.g. constant $-\left(x-\frac{1}{2}\right)^2$
			or calculus as far as $1 - 2x = 0$
			or finding roots $x = 0$ and $x = 1$ and using symmetry soi
	when $x = \frac{1}{2}$	A1	Implies M1 if not clearly from wrong working
	[greatest value =] $\frac{1}{4}$	B1	
(b)	Valid comment e.g. when $x \ge 1$, f' is always	B1	Allow e.g. a sketch with a comment such as the curve is one-one [when $x \ge 1$]
	decreasing		or e.g. the curve is one-one when $x > \frac{1}{2}$
(c) (i)	$k(10) = 8$ or $5 + \sqrt{10-1} = 8$ or stating $h(8)$	M1	$\operatorname{or}[\operatorname{hk}(x) =] \operatorname{lg}(7 + \sqrt{x - 1})$
	$h(8) = 1 \text{ or } \lg(8+2) = 1 \text{ cao}$	A1	$[hk(10) =] \lg(7 + \sqrt{10 - 1}) = 1$
(ii)	$\left(y-5\right)^2 = x-1$	M1	$\operatorname{or}(x-5)^2 = y-1$
	$k^{-1}(x) = (x-5)^2 + 1$ isw or $k^{-1}(x) = x^2 - 10x + 26$ isw	A1	
	or $k^{-1}(x) = x^2 - 10x + 26$ isw	D1 D1	D10 5 4 1D10 415
	5 < x < 15	B1, B1	B1 for $5 < x$ oe and B1 for $x < 15$ oe
			allow (5, 15); one mark for each limit of the interval;
			if B0 then SC1 for $5 \le x \le 15$ or '5 to 15' or [5, 15] etc.
	$1 < k^{-1}(x) < 101$	B1	allow (1, 101)

			3, 2
Page 8	Mark Scheme	Syllabus	P. Vinally
	Cambridge IGCSE – May/June 2016	0606	22 Pth

Question	Answer	Marks	Guidance	
12 (i)	$8(1-\cos^2 A) + 2\cos A = 7$ or better Solves or factorises <i>their</i> 3-term quadratic in $\cos A$	B1 M1		
	60, 104.477 rounded or truncated to 1 dp or more;	A2	with no extras in range; not from clearly wrong working but allow recovery from minor slips or A1 for either, ignoring extras	
(ii)	$\sin(3B+1) = 0.4 \text{ soi}$	B1	may be implied by $\frac{1}{\sin(3B+1)} = 2.5$	
	[3B + 1 =] 0.41 or better	M1	implies B1	
	0.577, 1.9[0], 2.67 or 0.57669, 1.89823, 2.67108 rounded or truncated to 4 or more sf	A2	with no extras in range; or A1 for any one correct ignoring extras If M0 then B2 for all 3 correct angles found	