

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2 (Paper 2), maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

		Mun m
Page 2	2 Mark Scheme	Syllabus P. The State
	Cambridge IGCSE – May/June 2015	5 0606 23 M
Abbrevi		Syllabus PL Mun
awrt	answers which round to	

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1	(a)	$\frac{\log_3 x}{\log_3 27}$ $\frac{\log_3 x}{3} \text{ isw}$	M1 A1	Can use other interim bases if all correct but M1 when in base 3 only NOT $\log_3 x \div 3$
	(b)	$\log_{a} 15 - \log_{a} 3 = \log_{a} 5 \text{ soi}$ $\log_{a} 5^{3} \text{ or } \log_{a} a$ $\log_{a} y = \log_{a} 125a \implies y = 125a$	M1 M1 A1	
2	(a)	[f(x) =]2x - 4 and $[f(x) =]-2x + 4$	B1,B1	Condone $y = \dots$
	(b)	y 4 0	B1 B1 B1	correct shape; y intercept marked or seen nearby; intent to tend to $y = 3$ (i.e. not tending to or cutting x-axis)
3	(a)	$\mathbf{A} = \frac{1}{4} \begin{bmatrix} 51 & -8 & 19\\ 31 & 2 & 65 \end{bmatrix} - \begin{pmatrix} 20 & 0 & -5\\ 15 & -10 & 25 \end{bmatrix}$ $\mathbf{A} = \begin{pmatrix} 8 & -2 & 6\\ 4 & 3 & 10 \end{pmatrix}$	M1	
		$\mathbf{A} = \begin{pmatrix} 8 & -2 & 6 \\ 4 & 3 & 10 \end{pmatrix}$	A1	Integer values
	(b) (i)	The (total) value of the stock in each of the 3 shops	B1	Must have "each" oe
	(ii)	The total value of the stock in all 3 shops	B1	Must have "total" oe

				mun m
[Page 3	Mark Scheme		Syllabus Pt Marting
		Cambridge IGCSE – May/Jun	ie 2015	0606 23 Thsci
4	(i)	$\frac{PT}{8} = \tan\left(\frac{3\pi}{8}\right) \text{ oe}$	M1	$\frac{Syllabus}{0606} \xrightarrow{P_{L}} n_{23}n_{3}n_{5}n_{5}n_{5}n_{5}n_{5}n_{5}n_{5}n_{5$
		<i>PT</i> =19.3	A1	awrt 19.3
	(ii)	$\frac{1}{2} \times 8^2 \times \frac{3\pi}{4}$ oe (75.4)	M1	or $\frac{1}{2} \times 8^2 \times \frac{3\pi}{8}$
		$8 \tan\left(\frac{3\pi}{8}\right) \times 8 - their \text{ sector } \text{ oe} (=154.5-`75.4`)$	M1	$8 \times their PT - their sector$
		79.1	A1	awrt 79.1
	(iii)	$8\left(\frac{3\pi}{4}\right)$ oe (18.8)	M1	
		$\left[6\pi + 16\tan\left(\frac{3\pi}{8}\right)\right] = 57.5$	A1	Accept 57.4 to 57.5
5	(a)	Permutation because the order matters oe	B1	
	(b) (i)	${}^{6}C_{4} + {}^{5}C_{4} + {}^{7}C_{4}$ 55	M1 A1	3 correct terms added
	(ii)	$^{2}C_{1} \times {}^{6}C_{1} \times {}^{5}C_{1} \times {}^{7}C_{1}$ 420	M1 A1	4 correct terms multiplied
	(iii)	${}^{6}C_{3} \times {}^{2}C_{1}$ or ${}^{2}C_{2} \times {}^{5}C_{1} \times {}^{6}C_{1}$	M1	for either correct product
		summation 70	M1 A1	adding two correct products
				If 0 scored, then SC1 for 1,1,1,0 and 0,0,2,1 seen
6	(i)	$2t^2 - 14t + 12 = 0$	M1	Can use formula, etc.
		(t-1)(t-6) oe (t=) 1	A1	If $t = 1$ with no working, then M1A1
	(ii)	$\int (2t^2 - 14t + 12) \mathrm{d}t$	M1	
		$\int (2t^2 - 14t + 12) dt$ (s=) $\frac{2t^3}{3} - \frac{14t^2}{2} + 12t$	A2,1,0	-1 for each error or for $+c$ left in or limits introduced
	(iii)	$(a=)\frac{\mathrm{d}v}{\mathrm{d}t} (4t-14)$	M1	
		[4(3) - 14 =] -2 cao	A1	

Page 4	Mark Scheme		Syllabus P. Ma
	Cambridge IGCSE – May/Jun	e 2015	0606 23 ⁴ /7 ₅
			Any correct simplified vector Any second simplified vector
(a)	$\overrightarrow{AB} = 15\mathbf{b} - 5\mathbf{a} = 5(3\mathbf{b} - \mathbf{a})$ or	B1	Any correct simplified vector
	$\overrightarrow{BC} = 24b - 3a - 15b = 3(3b - a)$ or	B1	Any second simplified vector
	$\overrightarrow{AC} = 24\mathbf{b} - 3\mathbf{a} - 5\mathbf{a} = 8(3\mathbf{b} - \mathbf{a})$		
	Comment: e.g. the vectors are scalar multiples of each other AND they have a common point (A , B or C as appropriate)	B1dep	Dep on both B marks being awarded.
(b) (i)	$2\mathbf{i} + 11\mathbf{j} \text{ soi}$ $\Rightarrow \sqrt{2^2 + 11^2}$	B1	
	$\Rightarrow \sqrt{2} + 11$ $\sqrt{125}$ or $5\sqrt{5}$ or $11.2 (3 \text{ s.f.})$ or better)	B1fT	ft <i>their</i> 2 i +11 j (not \overrightarrow{OP} or \overrightarrow{OQ})
(ii)	$\frac{1}{5\sqrt{5}}$ (2 i + 11 j) isw	B1fT	ft <i>their</i> answers from (i)
(iii)	$\frac{\mathbf{i} - 4\mathbf{j} + 3\mathbf{i} + 7\mathbf{j}}{2} \text{or} \mathbf{i} - 4\mathbf{j} + \frac{2\mathbf{i} + 11\mathbf{j}}{2} \text{or}$	M1	
	$3\mathbf{i} + 7\mathbf{j} - \frac{2\mathbf{i} + 11\mathbf{j}}{2}$		
	2i+1.5j	A1	
(a) (i)	ke^{4x+3} (+ <i>c</i>) oe	M1	any constant, non-zero k
	$k = \frac{1}{4}$ oe	A1	
(ii)	$\frac{1}{4} \left(e^{4(3)+3} - e^{4(2.5)+3} \right) \text{ or better}$	DM1	ft <i>their</i> integral attempt
	706650.99 = 707000 to 3 sf or better	A1	Accept $\frac{1}{4} \left(e^{15} - e^{13} \right)$
(b) (i)	$k\sin\left(\frac{x}{3}\right)$ (+ c)	M1	any constant, non-zero k
	k = 3	A1	
(ii)	$k \sin\left(\frac{x}{3}\right) (+c)$ k = 3 $3 \sin\left(\frac{\pi}{6} \times \frac{1}{3}\right) - 3\sin(0)$	DM1	Dep on <i>their</i> integral attempt in sin; condone omission of lower limit
	0.520944 = 0.521 to 3 sf or better	A1	Accept $3\sin\left(\frac{\pi}{18}\right)$
(c)	$\int \left(x^{-2} + 2 + x^2\right) dx = \frac{x^{-1}}{-1} + 2x + \frac{x^3}{3}$	B1	Expands – accept unsimplified
(0)		M1 A1	integration of <i>their</i> 3 term expansion Fully correct

F	Page 5	Mark Scheme Cambridge IGCSE – May/Jun	0 2015	Syllabus P. Unathe 0606 23
L		Cambridge IGCSE – May/Jun	e 2015	0606 23 1150
)	(a)	$(4x-1)(x+5) [\leqslant 0]$	M1	Solves quadratic
		critical values $\frac{1}{4}$ and -5 soi	A1	
		$-5 \leqslant x \leqslant \frac{1}{4}$	A1	Accept: $\left[-5, \frac{1}{4}\right]; -5 \le x \text{ AND } x \le 0.25$
	(b) (i)	$(x+4)^2 - 25$ or $a = 4$ and $b = -25$	B1, B1	
	(ii)	(Greatest value =) 25 x = -4	B1ft B1ft	Must be clear
	(iii)		B1	Correct shape with maximum in second quadrant and crossing positive and negative axes correctly
			B1	All 3 intercepts correctly shown on graph
10	(i)	$\ln y = \ln(Ab^x) \implies \ln y = \ln A + \ln b^x$	M1	
		$\Rightarrow \ln y = \ln A + x \ln b$	A1	
	(ii)	$\ln A = 11.4 \Rightarrow A = e^{iheir 11.4}$	M1	condone misread of scale for M1 (11.2
		A = 90000 cao	A1	only)
		$\ln b = -1$ b = 0.4 cao	M1 A1	Allow awrt –1
	(iii)	$x = 2.5 \Longrightarrow \ln y = 9$	M1	
		$y = e^9$ or 8000 to 1 sf	A1	Allow awrt 8100
1	(i)	7 - x, x, 6 - x oe	B1	
		<i>their</i> attempt at $7-x+x+6-x+16=25$ oe	M1	
		x = 4	A1	Condone $x = 4$ for all 3 marks
	(ii)	23 - y, y, 9 - y oe	B1	or $n(A \cup C) = 48 - 16 = 32$
		48 = 30 + 25 + 15 - 7 - 6 - (their 4 + y) + their 4 oe soi	M1	or $32 = 30 + 15 - (their 4 + y)$ or $48 = (23 - y) + 3 + 16 + y + 4$ + 2 + (9 - y)
		<i>y</i> = 9	A1	Condone $y = 9$ for all 3 marks
	(iii)	$n(C) = 15 \text{ and } y + n(B \cap C) = 9 + 6 = 15$ [and so $A' \cap B' \cap C = \emptyset$].	B1	or equivalent deduction