

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

		Mun M
Page 2	Mark Scheme	Syllabus Pi no Mar
	Cambridge IGCSE – May/June 2015	0606 22 413
Abbreviations		Syllabus Pt nainscioud.com

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
www	without wrong working

1	(i)	$ \begin{array}{c} $	B3,2,1,0	2 correctly placed in Venn diagram; 1, 3, 4, 6 correctly placed; 12, 8, 0, 7, 9, 10 correctly placed; 11, 5 correctly placed
	(ii)	3	B1ft	correct or correct ft <i>their</i> (i), provided non-zero
	(iii)	{4, 6}	B1ft	correct or correct ft <i>their</i> (i), provided not the empty set
2	(i)	$[\mathbf{P} =] \begin{pmatrix} 60 & 70 & 58 \\ 50 & 52 & 34 \end{pmatrix}$ and $[\mathbf{Q} =] (120 300)$	B2	or $[\mathbf{P} =] \begin{pmatrix} 50 & 52 & 34 \\ 60 & 70 & 58 \end{pmatrix}$ and $[\mathbf{Q} =] (300 120)$
	(ii)	(22200 24000 17160)	B2	or B1 if one error may be written as an unevaluated product; B0 if choice of P and Q offered must have brackets and must not have commas; must be a 1 by 3 matrix; must be from correct product; working may be seen in (i) or B1 for any two elements correct
	(iii)	The total (amount of revenue) from all (three) flights. oe	B1	do not accept, e.g. The total amount from each flight; must be a comment not just a figure; must not contain a contradiction

Page 3	Mark Scheme	<u>.</u>	Syllabus P. M. Marker
T age 5	Cambridge IGCSE – May		15 0606 22 PH
			SCHOUL
3 (i)	$\frac{\left(36+15\sqrt{5}\right)}{\left(6+3\sqrt{5}\right)} \times \frac{\left(6-3\sqrt{5}\right)}{\left(6-3\sqrt{5}\right)} \text{ oe}$	M1	$\frac{\text{Syllabus}}{15} \frac{\text{Syllabus}}{0606} \frac{\text{P}}{22} \text{P}_{\text{Scloud},\text{Collar}}$ or $\frac{(12+5\sqrt{5})}{(2+\sqrt{5})} \times \frac{(2-\sqrt{5})}{2-\sqrt{5}}$ oe
	$\frac{216 + 90\sqrt{5} - 108\sqrt{5} - 225}{-9}$	DM1	or $\frac{24+10\sqrt{5}-12\sqrt{5}-25}{-1}$
	$1 + 2\sqrt{5}$ cao	A 1	or $-(24+10\sqrt{5})-12\sqrt{5}-25$
		A1	allow $a = 1$ and $b = 2$
	Alternative method: $36 + 15\sqrt{5} = (6a + 15b) + (3a + 6b)\sqrt{5}$	M1	
	6a + 15b = 36 3a + 6b = 15	DM1	
	a = 1 and $b = 2$	A1	or $1 + 2\sqrt{5}$
(ii)	$\begin{bmatrix} AC^2 = (6+3\sqrt{5})^2 + their(1+2\sqrt{5})^2 \end{bmatrix}$ = 36 + 36\sqrt{5} + 45 + their(1+4\sqrt{5} + 20)	M1	correct or correct ft expansions, using Pythagoras with $(6+3\sqrt{5})$ and <i>their BC</i>
	$102 + 40\sqrt{5}$ cao	A1	ignore attempts to square root after correct answer seen
4 (i)			Alternatively
	$\cos(x) = \frac{2}{3}$ oe soi	M1	$\sin(y) = \frac{2}{3}$ oe soi
	48.189° or 131.810° or 0.8410 rad or 2.3(00) rad oe isw	A1	41.810° or 0.7297 or 0.73(0) rad oe isw
	with reference axis indicated by comment, e.g. "to the bank" or "upstream", etc. or clearly marked on a diagram		with reference axis indicated by comment, e.g. "to the perpendicular with the bank", etc. or clearly marked on a diagram
			If M0 then SC1 for an unsupported answer of 138.189° or 2.4118 rad or 318.189° or 5.5534 rad with reference axis indicated by comment, e.g. "on a bearing of" or "from North" or clearly marked on a diagram

			mm y
Page 4	Mark Scheme	Syllabus P. The Syllabus	
	Cambridge IGCSE – May	/June 201	5 0606 22 °the 75
(ii)	Speed = $\sqrt{9-4} \left(=\sqrt{5}\right)$ or $3\sin 48.2$ or	B1	SyllabusPt5060622 $107.(33)$
	$2 \tan 48.2 \text{ or } 3\cos 41.8 \text{ or } \frac{2}{\tan 41.8} \text{ or } \frac{2}{\tan 41.8}$		oe soi
	$\sqrt{2^2 + 3^2 - 2 \times 2 \times 3\cos 48.2}$ oe		
	or 2.236(0) rot to 4 or more figs or 2.24 [m/s] soi		
	time = $\frac{80}{their \sqrt{5}}$ oe	M1	time = $\frac{their 107.33}{3}$
	35.66 to 35.8 (seconds) oe	A1	ignore subsequent rounding or attempted conversion to, e.g. minutes but A0 if answer spoiled by continuation of method
			if no working, so B0 M0, then allow B3 for an answer 35.66 to 35.8 oe
5	Substitution of either $4 - x$ or $4 - y$ into equation of curve and brackets expanded	M1	condone one sign error or slip in either equation of curve or expansion of brackets; condone omission of $= 0$, BUT 4 - x or $4 - y$ must be correct
	$12x^2 - 52x + 48 = 0$ or $12y^2 - 44y + 32 = 0$ oe	A1	
	Solve their 3-term quadratic	M1	dep on a valid substitution attempt
	$x = \frac{4}{3}$ and 3 isw	A1	or $x = \frac{4}{3}$ $y = \frac{8}{3}$
	3		3 3 not from wrong working
	$y = \frac{8}{3}$ and 1 isw	A1	or $x = 3$ $y = 1$ not from wrong working
			if no working, allow full marks for fully correct answer only.
6 (a)	$(x-2) \log 6 = \log \left(\frac{1}{4}\right)$ oe or $\log_6\left(\frac{1}{4}\right) = x-2$ oe	M1	or $x \log 6 = \log\left(\frac{36}{4}\right)$ oe
	$\log_6\left(\frac{1}{4}\right) = x - 2 \text{ oe}$		or $x \log 6 - \log 36 = \log 1 - \log 4$ oe
	1.23 or 1.226(29) rot to 4 or more figures isw	A1	correct answer or 1.22 implies M1

Page 5	Mark Scheme	Syllabus P. Mark	
	Cambridge IGCSE – May	/June 201	5 0606 22 Thsc
(b)	Method 1 $\log\left(\frac{8 \times 2y^2 \times 16y}{64y}\right) = \log 4^2 \text{ oe}$ $y = 2$	B3 B1	or B2 if at most one error or omitted step or B1 if at most two errors or omitted steps not from wrong working
	Method 2 $\log 2 + 2 \log y + 3 \log 2 + 4 \log 2 + \log y - 6 \log 2 - \log y = 4 \log 2$	B3,2,1,0	$log 2y^{2} = log 2 + 2 log y;$ log 8 = 3 log 2; log 16y = 4 log 2 + log y; -log 64y = -6 log 2 - log y; <u>RHS term</u> 2 log 4 = 4 log 2
	<i>y</i> = 2	B1	not from wrong working
	$\frac{n(n-1)(n-2)(n-3)(2^4)}{4 \times 3 \times 2 \times 1} = 10 \frac{n(n-1)(2^2)}{2 \times 1}$ or better	М3	condone omitting the factor of <i>n</i> and/or <i>n</i> – 1; must have dealt with factorials M2 if one slip/omission or M1 if two slips/omissions or B1 for $\frac{n(n-1)}{2}(2)^2[x^2]$ seen and B1 for $\frac{n(n-1)(n-2)(n-3)}{24}(2)^4[x^4]$ seen
	$n^2 - 5n - 24 = 0$ oe	A1	equivalent must be 3-terms, e.g. $n^2 - 5n = 24$
	(n+3)(n-8) = 0	M1	or any valid method of solution for their
	n = 8 only	A1	3-term quadratic A0 if -3 also given as a final solution, i.e. not discarded If zero scored, allow SC1 for $n = 8$ unsupported or without correct method

8

Mark Scheme Cambridge IGCSE – May/June 2015

www.mymathscioud.com Syllabus 0606

Method 1 (Separate areas subtracted) **B**1 $[x_{B} = x_{C} =]$ 7 soi $\left[\int (x^2 - 6x + 10) dx = \right] \frac{x^3}{3} - \frac{6x^2}{2} + 10x$ M2 or M1 for at least one term correct Correct or correct ft substitution of limits 0 dep on at least M1 being earned; DM1 and their 7 into their $\left[\frac{x^3}{3} - \frac{6x^2}{2} + 10x\right]$ $\frac{1}{2}(10+17) \times 7$ oe or $\int_0^7 (x+10) dx = \left[\frac{x^2}{2} + 10x\right]_0^7 = \frac{(7)^2}{2} + 10(7)$ oe *their* $\left(\frac{189}{2} - \frac{112}{3}\right)$ $\frac{343}{6}$ or 57 $\frac{1}{6}$ or 57.2 to 3 sf or 57.16(6...) rot to 4 figs isw Method 2 (Subtracting and using integration once) $\left[x_B = x_c = \right]$ 7 soi $\int (-x^2 + 7x) dx$ $\left[-\frac{x^3}{3}+\frac{7x^2}{2}\right]$ oe or $\left[\frac{x^3}{3}-\frac{7x^2}{2}\right]$ oe Correct or correct ft substitution of limits 0 and their 7 into their $\left| -\frac{x^3}{3} + \frac{7x^2}{2} \right|$ $\frac{343}{6}$ or 57 $\frac{1}{6}$ or 57.2 to 3 sf or 57.16(6...) omitted steps rot to 4 figs isw

evidence of substitution must be seen in
their integral which must be at least two
terms; condone omission of lower limit;
B2 or M1 for

$$\frac{1}{2}$$
 (their 10 + their 17) × their 7 oe
or B1 for
 $\int (x+10) dx = \frac{x^2}{2} + 10x$
M1 dep on a genuine attempt to integrate the
equation of the curve;
must be their area trapezium/under the
line – their attempt at area under curve
A1 from full and correct working with no
omitted steps
B1
B1 condone omission of dx
M3 or M2 for
 $\int (px^2 + qx) dx = \frac{px^3}{3} + \frac{qx^2}{2}$ oe either with
 $p = \pm 1$ or $q = \pm 7$
or M1 for $\int (px^2 + qx) dx = \frac{px^3}{3} + \frac{qx^2}{2}$
with non-zero constants p and q, with $p \neq \pm 1$ and $q \neq \pm 7$
dep on a valid integration attempt;
evidence of substitution must be seen;
condone omission of lower limit;
A1 from full and correct working with no

WMW, MJ MA NS IS P 22 RINSCIOUD.COM
I that
I that
I that
with no
cular gradient
ith integer 1 form
en
d with correct
sinusoidal intent to have height;
ed equal
1;

Mark Scheme Cambridge IGCSE – May/June 2015

			Alternative method	
Page 8	Mark Scheme Syllabus Pa			
	Cambridge IGCSE – May	/June 201	5 0606 22 Mg 5	
		[TOUD.	
(b)(i)	$[hg(x) =]\frac{e^{\ln(4x-3)} + 3}{4}$	M1	$y = \ln(4x - 3)$ and change of subject to x	ON
	fully correct and completion to $[hg(x) =] x$	A1	fully correct and comment that $h(x) = g^{-1}(x)$ oe	
(ii)	y = h(x) y = g(x)	B2,1,0	correct shape; 1 marked on the <i>y</i> -axis or (0, 1) stated close by; curve with positive gradient in first quadrant only	
(iii)	$x \ge 0$ or $[0, \infty)$	B1	not domain ≥ 0	
(iv)	$y \ge 1$ or $[1, \infty)$	B1	or $h(x) \ge 1$, $h \ge 1$ etc.	
11 (i)	$\frac{8-h}{8} \text{ or } 8:8-h \text{ soi}$	M1	or $\frac{8}{8-h}$ or $8-h:8$ soi	
	$\frac{8-h}{8} \times 4$ oe	A1	or $4 \div \frac{8}{8-h}$ oe	
	$h\left(\frac{8-h}{8}\times4\right)^2$ oe	M1	<i>h</i> must be in the numerator of the expression for this mark;	
	expand and simplify to $\frac{h^3}{4} - 4h^2 + 16h$ AG	A1		
(ii)	$\frac{3}{4}h^2 - 8h + 16$ oe	B1		
	<i>their</i> $\left(\frac{3}{4}h^2 - 8h + 16\right) = 0$ and attempt to solve	M1	must be a 3-term quadratic; must be an attempt at a derivative	
	$\frac{8}{3}$ oe only	A2	or A1 for $h = \frac{8}{3}$ and 8	
			allow 2.67 or 2.66(6) rot to 4 or more figs for $\frac{8}{3}$	

Pag	e 9	Mark Scheme		
	Cambridge IGCSE – May/June 2015 0606		5 0606 22 3 v	
12	(i)	-120 + 104 + 22 - 6 = 0	B1	or correct synthetic division
		or correct unsimplified form, e.g. $15(-2)^3 + 26(-2)^2 - 11(-2) - 6 = 0$ or 15(-8) + 26(4) - 11(-2) - 6 = 0		$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
(ii)	Substituting $x = 3$ into $15x^3 + 26x^2 - 11x - 6$	M1	or correct synthetic division
				$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		600	A1	correct answer implies M1; must be explicitly identified as answer if using synthetic/long division methods by e.g. circling
(i	ii)	$(x-1)(15x^3+26x^2-11x-6)$ soi	B1	by inspection or division; may be implied by e.g. $(ax + b)(15x^3 + 26x^2 - 11x - 6)$ and $a = 1, b = -1$ seen in later work comparing coefficients
		Multiply out $(x \pm 1)(15x^3 + 26x^2 - 11x - 6)$ and compare coefficients of x^3 or x to quartic	M1	or multiply out, e.g. $(ax + b)(15x^3 + 26x^2 - 11x - 6)$ and compare coefficients of x^3 or x to quartic
		<i>p</i> = 11	A1	correct p or q implies M1; correct p and q www implies B1 M1
		<i>q</i> = 5	A1	