

MARK SCHEME for the May/June 2015 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

		Mun M
Page 2	Mark Scheme	Syllabus P. The State
	Cambridge IGCSE – May/June 2015	0606 12
Abbreviat	tions	Syllabus PL Mainsurs 0606 12 Scloud com
awrt	answers which round to	

Abbreviations

awrt	answers which round to
cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
rot	rounded or truncated
SC	Special Case
soi	seen or implied
WWW	without wrong working

1	$k^{2} - 4(2k+5) (<0)$ $k^{2} - 8k - 20 (<0)$ $(k-10)(k+2) (<0)$ critical values of 10 and -2 $-2 < k < 10$	M1 M1 A1 A1	use of $b^2 - 4ac$, (not as part of quadratic formula unless isolated at a later stage) with correct values for <i>a</i> , <i>b</i> and <i>c</i> Do not need to see < at this point attempt to obtain critical values correct critical values correct range
	Alternative 1:		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2(2k+5)x+k$	M1	attempt to differentiate, equate to zero and substitute x value back in to obtain a y value
	When $\frac{dy}{dx} = 0$, $x = \frac{-k}{2(2k+5)}$, $y = \frac{8k+20-k^2}{4(2k+5)}$	M1	consider $y = 0$ in order to obtain critical values
	When $y = 0$, obtain critical values of 10 and -2 -2 < k < 10	A1 A1	correct critical values correct range
		111	
	Alternative 2:		
	$y = (2k+5) \left(\left(x + \frac{k}{2(2k+5)} \right)^2 - \frac{k^2}{4(2k+5)} \right) + 1$	M1	attempt to complete the square and consider $1 - \frac{k^2}{4(2k+5)}$ '
	Looking at $1 - \frac{k^2}{4(2k+5)} = 0$ leads to	M1	attempt to solve above = to 0, to $(2\pi + 2)$
	4(2k+5) critical values of 10 and -2	A 1	obtain critical values correct critical values
	-2 < k < 10	A1 A1	correct range

Page 3	Mark Schem	e	Syllabus P. 75
	Cambridge IGCSE – Ma	y/June 2015	0606 12 ⁹
		1 [
	$\frac{\tan\theta + \cot\theta}{\csc\theta} = \frac{\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}}{\frac{1}{\sin\theta}}$ $\sin^2\theta + \cos^2\theta$		for $\tan \theta = \frac{\sin \theta}{\cos \theta}$, $\cot \theta = \frac{\cos \theta}{\sin \theta}$ and $\csc \theta = \frac{1}{\sin \theta}$; allow when used
	$=\frac{\frac{\sin\theta\cos\theta}{1}}{\frac{1}{\sin\theta}}$		dealing correctly with fractions in the numerator; allow when seen
	$=\frac{1}{\cos\theta}$		use of the appropriate identity; allow when seen
	$= \sec \theta$		must be convinced it is from completely correct work (beware missing brackets)
	Alternative: $\frac{\tan\theta + \cot\theta}{\csc\theta} = \frac{\frac{\tan^2\theta + 1}{\tan\theta}}{\csc\theta}$		for either $\tan \theta = \frac{1}{\cot \theta}$ or $\cot \theta = \frac{1}{\tan \theta}$ and
	$=\frac{\sec^2\theta}{\tan\theta\frac{1}{\sin\theta}}$	M1	$\csce \theta = \frac{1}{\sin \theta}$; allow when used dealing correctly with fractions in numerator; allow when seen
	$=\frac{\sec^2\theta}{\sec\theta}$		use of the appropriate identity; allow when seen must be convinced it is from
	$= \sec \theta$	111	completely correct work
	$\mathbf{A}^{-1} = \frac{1}{2} \begin{pmatrix} 3 & -2 \\ -5 & 4 \end{pmatrix}$		$\frac{1}{2}$ multiplied by a matrix for matrix
	$\binom{x}{y} = \frac{1}{2} \binom{3}{-5} \frac{-2}{4} \binom{8}{9}$	M1 -	attempt to use the inverse matrix, must be pre-multiplication
	$ \begin{pmatrix} x \\ y \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 6 \\ -4 \end{pmatrix} $ x = 3, y = -2		
	x = 3, v = -2	A1, A1	

Page 4		2045	Syllabus P. That
	Cambridge IGCSE – May/June	2015	0606 12 13 Ch
(i)	Area = $\left(\frac{1}{2} \times 12^2 \times 1.7\right) + \left(\frac{1}{2} \times 12^2 \sin(2\pi - 1.7 - 2.4)\right)$	B1,B1	B1 for sector area, allow unsimplified B1 for correct angle <i>BOC</i> , allow
		M1	unsimplified correct attempt at area of triangle, allow unsimplified using <i>their</i> angle <i>BOC</i> (Their angle <i>BOC</i> must not be 1.7 or 2.4)
	= awrt 181	A1	01 2.4)
(ii)	$BC^{2} = 12^{2} + 12^{2} - (2 \times 12 \times 12 \cos 2.1832)$	M1	correct attempt at <i>BC</i> , may be seen in (i), allow if used in (ii). Allow
	or $BC = 2 \times 12 \times \sin\left(\frac{2\pi - 4.1}{2}\right)$		use of <i>their</i> angle <i>BOC</i> .
	BC = 21.296	A1	
	Perimeter = $(12 \times 1.7) + 12 + 12 + 21.296$	B1 M1	for arc length, allow unsimplified for a correct 'plan' (an arc + 2 radii and <i>BC</i>)
	= 65.7	A1	(an arc ± 2 radii and BC)
5 (a) (i)	20160	B1	
(ii)	$3 \times {}^{6}P_{4} \times 2$	B1,B1	B1 for ${}^{6}P_{4}$ (must be seen in a
	= 2160		product) B1 for all correct, with no further working
(iii)	$5 \times 2 \times {}^{6}P_{4}$	B1,B1	B1 for ${}^{6}P_{4}$ (must be seen in a
	= 3600	B1	product) B1 for 5 (must be in a product) B1 for all correct, with no further
	Alternative 1:		working
	${}^{6}C_{4} \times 5! \times 2$	B2	for ${}^{6}C_{4} \times 5!$
	= 3600	B1	for ${}^{6}C_{4} \times 5! \times 2$
	Alternative 2: $\binom{7}{P_5} - \binom{6}{P_5} \times 2$	D2	for $\left({}^7P_5 - {}^6P_5\right)$
	$({}^{P}_{5} - {}^{o}P_{5}) \times 2$ = 3600	B2 B1	for $({}^{7}P_{5} - {}^{6}P_{5})$ for $({}^{7}P_{5} - {}^{6}P_{5}) \times 2$
	Alternative 3:		
	$2! ({}^{6}P_{4} + ({}^{6}P_{1} \times {}^{5}P_{3}) + ({}^{6}P_{2} \times {}^{4}P_{2}) + ({}^{6}P_{3} \times {}^{3}P_{1}) + {}^{6}P_{4})$	B2	4 terms correct or omission of 2! in

Page 5	Mark Scheme	15	Syllabus PL That Ast
	Cambridge IGCSE – May/June 20	15	0606 12 Thscho
(b) (i)	${}^{14}C_4 \times {}^{10}C_4 \text{or} {}^{14}C_8 \times {}^8C_4$ (or numerical or factorial equivalent) = 210210	B1,B1	SyllabusP.060612B1 for either ${}^{14}C_4$ or14 C40B1 for correct answer, with no further working
(ii)	${}^{8}C_{4} \times {}^{6}C_{4}$ $= 1050$	B1,B1	B1 for either ${}^{8}C_{4}$ or ${}^{6}C_{4}$ as part of a product B1 for correct answer with no further working
(i)	10ln4 or 13.9 or better	B1	
(ii)	$\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right) = \frac{20t}{t^2 + 4} - 4$	M1 B1	attempt to differentiate and equate to zero $\frac{20t}{t^2 + 4}$ or equivalent seen
	When $\frac{dx}{dt} = 0$, $\frac{20t}{t^2 + 4} = 4$ leading to $t^2 - 5t + 4 = 0$	DM1	attempt to solve <i>their</i> $\frac{dx}{dt} = 0$, must be a 2 or 3 term quadratic equation with real roots
	t = 1, t = 4	A1	for both

Page 6			Syllabus Perman
	Cambridge IGCSE – May/June 201	5	0606 12 Thsch
(iii)	If $(v =) \frac{20t}{t^2 + 4} - 4$		Syllabus P. Markar 0606 12 Office Color
	$(a=) \frac{20(t^2+4)-20t(2t)}{(t^2+4)^2}$	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
		A1	$20(t^2+4)$
		A1	20t(2t)
	$20(4-t^2)$ or $80-20t^2$ or $4-t^2$ or equivalent expression involving $-t^2$	A1	$20(4-t^2)$ or $80-20t^2$ or $4-t^2$
	When acceleration is 0, $t = 2$ only	B1	t = 2, dependent on obtaining first and second A marks
	Alternative 1 for first 3 marks: If $(v =) \frac{20t - 4t^2 - 16}{t^2 + 4}$	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
	$t^2 + 4$		
	$(a=)\frac{(t^2+4)(20-8t)-(20t-4t^2-16)(2t)}{(t^2+4)^2}$	A1	for $(t^2 + 4)(20 - 8t)$ for $(20t - 4t^2 - 16)(2t)$
	$\left(t^2+4\right)^2$	A1	for $(20t - 4t^2 - 16)(2t)$
	Alternative 2 for M1 mark: If $(v =) 20t(t^2 + 4)^{-1} - 4$ $(a =) 20t(-2t(t^2 + 4)^{-2}) + 20(t^2 + 4)^{-1}$	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
	Alternative 3 for the first 3 marks If $(v =) (20t - 4t^2 - 16)(t^2 + 4)^{-1}$		dx
	$(a =)(20t - 4t^{2} - 16)(-2t(t^{2} + 4)^{-2}) + (20 - 8t)(t^{2} + 4)^{-1}$	M1	attempt to differentiate <i>their</i> $\frac{dx}{dt}$
	Numerator = $-2t(20t - 4t^2 - 16) + (20 - 8t)(t^2 + 4)$	A1	for $2t(20t-4t^2-15)$
	$\frac{1}{2} \left(\frac{20}{20} - \frac{1}{10} - \frac{10}{20} \right) \left(\frac{1}{10} - \frac{10}{10} \right) \left(\frac{1}{10} - \frac{10}{10} \right)$	A1	for $(20-8t)(t^2+4)$
(i)	$\overrightarrow{DA} = 3\mathbf{a} - \mathbf{b}$	B1	mark final answer, allow unsimplified
(ii)	$\overrightarrow{DB} = 7\mathbf{a} - \mathbf{b}$	B1	mark final answer, allow unsimplified
(iii)	$\overrightarrow{AX} = \lambda \left(4\mathbf{a} + \mathbf{b} \right)$	B1	mark final answer, allow unsimplified
(iv)	$\overrightarrow{DX} = 3\mathbf{a} - \mathbf{b} + \lambda \left(4\mathbf{a} + \mathbf{b} \right)$	M1	<i>their</i> (i) + <i>their</i> (iii) or equivalent
		A1	valid method or $3\mathbf{a} - \mathbf{b} + their$ (iii) Allow unsimplified

Page 7	Mark Scheme Cambridge IGCSE – May/June 2	2015	Syllabus P. Marting 0606 12
(v)	$3\mathbf{a} - \mathbf{b} + \lambda (4\mathbf{a} + \mathbf{b}) = \mu (7\mathbf{a} - \mathbf{b})$ Equate like vectors: $3 + 4\lambda = 7\mu$ $-1 + \lambda = -\mu$ leads to $\lambda = \frac{4}{11}, \ \mu = \frac{7}{11}$	M1 DM1 A1,A1	SyllabusP.060612equating their (iv) and $\mu \times their$ (i),for an attempt to equate like vectorsand attempt to solve 2 linearequations for λ and μ A1 for each
(i)	$5e^{2x} - \frac{1}{2}e^{-2k}$ (+c)	B1, B1	B1 for each term, allow unsimplified
(ii)	$\left(5e^{2k}-\frac{1}{2}e^{-2k}\right) - \left(5e^{-2k}-\frac{1}{2}e^{2k}\right)$	M1 A1	use of limits provided integration has taken place. Signs must be correct if brackets are not included. allow any correct form
(iii)	$\left(5e^{2k} - \frac{1}{2}e^{-2k}\right) \left(5e^{-2k} - \frac{1}{2}e^{2k}\right) = -60$ or $\frac{11}{2}e^{2k} - \frac{11}{2}e^{-2k} = -60$	B1	correct expression from (ii) either simplified or unsimplified equated to -60 , must be first line seen.
	or equivalent leading to $11e^{2k} - 11e^{-2k} + 120 = 0$	DB1	must be convinced as AG
(iv)	$11y^{2} + 120y - 11 = 0$ (11y - 1)(y + 11) = 0 leading to	M1	attempt to obtain a quadratic equation in y or e^{2k} and solve to get y or e^{2k} (only need positive solution)
	$k = \frac{1}{2} \ln \frac{1}{11}, \ \ln \frac{1}{\sqrt{11}}, \ -\ln \sqrt{11}, \ -\frac{1}{2} \ln 11$	DM1 A1	attempt to deal with e to get $k =$. any of given answers only.

Page 8			Syllabus P. Ma
	Cambridge IGCSE – May/June 2015		0606 12 ⁴ /1 ₅ (1
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4 - 6\sin 2x$	M1,A1	Syllabus P. 0606 12 M1 for attempt to differentiate A1 for all correct
	When $x = \frac{\pi}{4}$, $y = \pi$	B1	for y
	$\frac{dy}{dx} = -2$ so gradient of normal $= \frac{1}{2}$	DM1	for substitution of $x = \frac{\pi}{4}$ into <i>their</i>
			$\frac{dy}{dx}$ and use of $m_1m_2 = -1'$, dependent on first M1
	Normal equation $y - \pi = \frac{1}{2} \left(x - \frac{\pi}{4} \right)$	DM1	correct attempt to obtain the equation of the normal, dependent on previous DM mark
	When $x = 0$, $y = \frac{7\pi}{8}$	A1	must be terms of π
	When $y = 0, x = -\frac{7\pi}{4}$	A1	must be terms of π
	Area = $\frac{1}{2} \times \frac{7\pi}{4} \times \frac{7\pi}{8} = \frac{49\pi^2}{64}$	B1ft	Follow through on <i>their x</i> and <i>y</i> intercepts; must be exact values
0 (a)	$\cos^{2} 3x = \frac{1}{2}, \qquad \cos 3x = (\pm)\frac{1}{\sqrt{2}}$ $3x = 45^{\circ}, 135^{\circ}, 225^{\circ}, 315^{\circ}$ $x = 15^{\circ}, 45^{\circ}, 75^{\circ}, 105^{\circ}$	M1 A1,A1	complete correct method, dealing with sec and 3, correctly A1 for each correct pair
(b)	$3(\cot^2 y + 1) + 5 \cot y - 5 = 0$ Leading to $3 \cot^2 y + 5 \cot y - 2 = 0$ or	M1	use of a correct identity to get an equation in terms of one trig ratio only
	$2\tan^2 y - 5\tan y - 3 = 0$ (3 cot y - 1)(cot y + 2)= 0 or (tan y - 3)(2 tan y + 1)= 0	M1	for $\cot y = \frac{1}{\tan y}$ to obtain either a quadratic equation in $\tan y$ or solutions in terms of $\tan y$; allow where appropriate
	$\tan y = 3, \tan y = \frac{1}{2}$	M1	for solution of a quadratic equation in terms of either $\tan y$ or $\cot y$
	$y = 71.6^{\circ}, 251.6^{\circ}$ 153.4°, 333.4°	A1,A1	A1 for each correct 'pair'
(c)	$\sin\left(z+\frac{\pi}{3}\right) = \frac{1}{2}$	M1	completely correct method of solution
	$z + \frac{\pi}{3} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}$	A1	one correct solution in range
	$z = \frac{\pi}{2}, \frac{11\pi}{6}$	M1	correct attempt to obtain a second solution within the range
	(allow1.57, 5.76)	A1	second correct solution (and no other)