

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

					mm	4
Page	2 Mark Scheme			Syllabus 0606	Pap Yna 23	The sthe
L		•				"SCIOUS
1 (i)	$500 = \frac{1}{2}r^2 (1.6)$	M1				id.con.
	25 only	A1	±25	5 is A0		
(ii)	<i>their</i> $25 + their$ $25 + their$ 25×1.6 or better	M1	their	r 25 must be positi	ve	
	90	A1				
2	$\log_x 3 = \frac{1}{\log_3 x}$ oe soi	B1	may	be implied by log	$g_x 3 = \frac{1}{u}$ oe	
	$u^2 - 4u - 12 = 0$ oe	M1	cond	done sign errors		
	solve their 3 term quadratic in u	M1				
	Solve $\log_3 x = 6$ or $\log_3 x = -2$ oe	M1				
	729 and $\frac{1}{9}$	A1				
3 (i)	$\begin{pmatrix} 3 & 1 & 4 \\ 1 & 3 & 0 \end{pmatrix} \text{ and } \begin{pmatrix} 5 \\ 3 \\ 1 \end{pmatrix}$	B1				
	or $(5 3 1)$ and $\begin{pmatrix} 3 & 1 \\ 1 & 4 \\ 4 & 0 \end{pmatrix}$					
	Multiplication of compatible matrices	M1	Mus proc	st be correct shape luct	from candidates	
	$\begin{pmatrix} 22\\ 17 \end{pmatrix}$ or $\begin{pmatrix} 22 & 17 \end{pmatrix}$ as appropriate	A1				
(ii)	$\begin{pmatrix} 1 & 1 \end{pmatrix}$ with $\begin{pmatrix} 22 \\ 17 \end{pmatrix}$ or $\begin{pmatrix} 22 & 17 \end{pmatrix}$ with $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$	B1				

				mm. m
Page 3		Mark Scheme	Syllabus Pap 473	
		IGCSE – May/June 2014		<u> </u>
4 (1	a) (i)		B1	Juy.
	(ii)	or or	B1	any Venn diagram showing three circles which do not all overlap
()	o) (i)	$50 \notin C$	B1	
	(ii)	$64 \in S \cap C$	B1ft	ft only on use of $\not\subset$ and \subset instead of \notin and \in
	(iii)	n(S') = 90	B1	
5 (i	i)	$\left(2\sqrt{2}+4\right)^2 = 8+16\sqrt{2}+16$	B 1	
		Correct completion	B1	
(ii	i)	Use $\frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$	M1	$\left(=\frac{\left(2\sqrt{2}+4\right)}{2\left(2\sqrt{2}+3\right)}\right)$
		Multiply top and bottom by $2\sqrt{2} - 3$	M1	
		$2 - \sqrt{2}$	A1	Or $4\sqrt{2} - 6$
6		Eliminate <i>x</i> or <i>y</i>	M1	
		Rearrange to quadratic in x or y	M1	
		$x^{2} - 27x + 72 = 0$ or $y^{2} + 9y - 90 = 0$	A1	
		Factorise or solve 3 term quadratic	M1	
		x = 3, x = 24 or $y = 6, y = -15$	A1	
		y = 6, y = -15 or $x = 3, x = 24$	B 1	

					mm. M	
Page 4		4 Mark Scheme	Syllabus	Pap	1, and a line	
		IGCSE – May/June 2014	ł	0606	23 aths	NS -
7	(a) (b)	$\frac{\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}}{\frac{1}{\cos\theta} + \frac{1}{\sin\theta}}$ Clears the fractions in the numerator and denominator using common denominator $\frac{\sin^2\theta + \cos^2\theta}{\sin\theta + \cos\theta}$ and completion evidence of 13	B1 M1 A1 B1			Soud Com
		$\sin x = \frac{5}{13}$ $\cos x = -\frac{12}{13}$	B1 B1ft	ft on <i>their</i> 13		
8	(i)	Attempt to find $b^2 - 4ac$	M1	may be in formula or attempt to complete	square	
		Completely correct argument	A1			
	(ii)	m = 6(4) - 8(2) + 3	M1			
		y - 10 = 11(x - 2) or $y = 11x - 12$	A1			
	(iii)	Integrate to $2x^3 - 4x^2 + 3x(+c)$	B2,1,0			
		$10 = 2(2)^3 - 4(2)^2 + 3(2) + c$	M1	dep on <i>c</i> being a genui integration	ne constant of	
		$y = 2x^3 - 4x^2 + 3x + 4$ soi	A1			

					MM. M. M.
Page	5	Mark Scheme IGCSE – May/June 2014		Syllabus 0606	Pap Inathe
) (i)	(0.7)		B1		50,
(1)	m_{AB} =	= 2	B1		
	perpe	endicular gradient $=-\frac{1}{2}$	M1		
	<i>y</i> = -	$-\frac{1}{2}x+7$	A1		
(ii)	<i>m_{AB}</i> =	=1	B 1		
	<i>y</i> = –	<i>x</i> + 13	B 1		
	Solve	e their $y = -x + 13$ and $y = -\frac{1}{2}x + 7$	M1		
	D(12	,1)	A1		
	Com	plete method for area	M1		
	84		A1		
10 (i)	$\frac{\mathrm{d}}{\mathrm{d}x}$	$\sqrt{x^2 + 21} = \frac{x}{\sqrt{x^2 + 21}}$	B1	Alt method using product $\frac{d}{dx} \frac{1}{\left(\sqrt{x^2 + 21}\right)} = \frac{-x}{\left(\sqrt{x^2 + 21}\right)}$	$\frac{x}{21}$ is B1
	Use	of quotient rule	M1	then M1 A1 as in quotien	t
	2√(,	$\frac{\overline{x^2+21}-2x\times \frac{x}{\sqrt{x^2+21}}}{(x^2+21)}$	A1		
	Mult	iply each term by $\sqrt{(x^2 + 21)}$	M1		
	$\frac{2(x^2)}{(x^2)}$	$\frac{(k+21)-2x^2}{(x^2+21)^{\frac{3}{2}}}$ leading to $k = 42$	A1		
(ii)	$\frac{6}{k} \times \frac{1}{2}$	$\frac{2x}{\sqrt{x^2 + 21}}$	M1	<i>k</i> must be a constant	
	Use]	limits in $C \times \frac{2x}{\sqrt{x^2 + 21}}$	M1		
	$\frac{8}{55}$ o	or 0.145	A1		

					mm. M	
Page 6		Mark Scheme	Syllabus	Pap. Unath	Maths	
		1963L - May/June 2014	•		23	Cloyer
11 (i)	\overrightarrow{OM}	= a	B 1			.0.CO/
	\overrightarrow{MB}	$=5\mathbf{b}-\mathbf{a}$	B1			
(ii)	\overrightarrow{ON}	=3b	B1			
	\overrightarrow{AP}	$=\lambda\left(3\mathbf{b}-2\mathbf{a}\right)$	B 1			
(iii)	\overrightarrow{MP}	$=\overrightarrow{MA}+\overrightarrow{AP}$	M1			
	a + 2	$d(3\mathbf{b}-2\mathbf{a})$	A1			
(iv)	Put	$\overrightarrow{MP} = \mu \overrightarrow{MB}$	M1			
	Equa	ate components	M1			
	Solv	e simultaneous equations	M1			
	$\lambda = -$	<u>5</u> 7	A1			
12 (i)	3 < 1	f < 7	B1,B1	If B0 then SC1 for 3 <	f < 7	
(ii)	f(12)) = 5	B1	$f^{2}(x) \sqrt{(\sqrt{(x-3)}+2-)}$	$3) + 2 \text{ earns } \mathbf{B1}$	
	(f(5)	$=) 2 + \sqrt{2}$	B1			
(iii)	Clear $f^{-1}(x)$	r indication of method) = $(x-2)^2 + 3$	M1 A1	condone $y = (x - 2)^2 + 3$	3	
(iv)	gf (x	$) = \frac{120}{\sqrt{(x-3)}+2}$	B1			
	Atte	mpt to solve <i>their</i> gf $(x) = 20$	M1			
	x = 1	9	A1			