

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

	Page 2	Mark Scheme		Syllabus	$\frac{h_{WWW}}{Pap}$	15345
		IGCSE – May/June 2014		0606	22 10	ice is
1	<u>(</u> 2++	halise the denominator to get $\frac{\sqrt{5}^2(\sqrt{5}+1)}{5-1}$ or better ing to get	M1	or squaring to ge better	$t \frac{\left(4+4\sqrt{5}+5\right)}{\sqrt{5}-1} \text{ or }$	OUT.COM
		$\frac{4\sqrt{5}+5)(\sqrt{5}+1)}{their4}$ or better	M1	or rationalising the get $\frac{their(9+4\sqrt{5})(\sqrt{5})}{5-1}$	the denominator to $(\overline{5}+1)$ or better	
	$\frac{29}{4}$ +	$\frac{13}{4}\sqrt{5}$ oe isw	A1 + A1	correct simplification Allow $\frac{29+13\sqrt{5}}{4}$	_	
2	Corre	ectly eliminate y	M1	$-kx+2=2x^2-9$	9x + 4 oe	
	$2x^2$ +	-(k-9)x+2[=0]oe	A1		erms not collected provided later worl be 0	
	Use <i>i</i>	$b^2 - 4ac$ oe	M1		ed to a 3 term ssion containing condone < 0 etc.	
		h their $(k-9=\pm 4)$ or				
	solve	s $their(k^2 - 18k + 65) = 0$	M1	condone $9-k$ inequality at this	$=\pm4$; condone an stage	1
	<i>k</i> = 5	and 13 cao	A1	mark final answe A0 if inequalities	er, do not isw; s for final answers	

						www.m.	
Γ	Page	3	Mark Scheme		Syllabus	Pap	Naz S
			IGCSE – May/June 2014		0606	22 41	C
3			$3(-1)^3 - 14(-1)^2 - 7(-1) + d = 0$ with completion to $d = 10$		at least $-3 - 14 + d = 10$; N.B. = 0 implied by = 0 be seen in follow or convincingly $3(-1)^3 - 14(-1)^2$ at least -3 - 14 + 7 + 10 or correct synthe as far as -1 = 3 - 14	9 must be seen or d or $\dots = -d$, may ying step. showing -7(-1)+10=0; = 0 tic division at leas 4 -7 10	
	(ii)	$3x^2 -$	17x + 10 isw or $a = 3, b = -17, c = 10$ isw	B2 , 1, 0	-1 each error; must be seen or r even if found in		
	(iii)		(x-5)(3x-2)	M1	• •		
		-1, 5,	$\frac{2}{3}$	A1	If M0 then SC1 stated without werified/found by	orking or	

				$\frac{Pap}{22}$
Page 4			Syllabus	Pap. mar and
	IGCSE – May/June	2014	0606	22 Thsc
	$(1)^2$ 17.			NOUD COD
4 (i)	$12\left(x-\frac{1}{4}\right)^2 + \frac{17}{4}$ isw	B3, 2, 1,0		mattea empression,
				For $12\left(x-\frac{1}{4}\right)+\frac{17}{4}$
			or	
			SC1 for correct 3 incorrect format $12\left(x - \frac{1}{4}x\right) + \frac{17}{4}$	e.g.
			$\begin{bmatrix} 12(x-\frac{1}{4}x) + \frac{1}{4} \\ 12(x^2-\frac{1}{4}) + \frac{17}{4} \end{bmatrix}$	
			or for a correct c	ompleted square nal expression in a
			$3\left(2x-\frac{1}{2}\right)^2+\frac{17}{4}$	-
(ii)	their $\frac{4}{17}$ or their 0.235	B1ft		- must be a proper 7 nal rounded to 3sig
			or more	
	their $x = \frac{1}{4}$ oe	B1ft	strict ft ; <i>x</i> must attributed	be correctly
5 (i)	$1 - 20x + 160x^2$	B2, 1, 0	-1 each error	
			seen; may be uns	
			1, $5(-4x)$, $\frac{5\times}{2}$	$\frac{4}{(-4x)^2}$
(ii)	a + (their - 20) = -23 soi	M1	condone sign err <i>their</i> –20 from (i	ors only; must be)
	<i>a</i> = -3	A1	validly obtained	
	b + (their - 20)a + (their 160) = 222 soi	M1	-	ors only ; must be eir160 from (i) and
	<i>b</i> = 2	A1	validly obtained	

Page 5		Mark Scheme IGCSE – May/June 2014		Syllabus 0606	Papi Papi Angenetics of	Nymathscie	
(a) (i)) 1		B1			Ud.CC	
(ii)	x = -	1 or –2	B1 + B1	as final answers			
(b)	$\frac{\log_3}{\log_3}$	$\frac{5}{a}$ seen or implied	B1*	may be implied by $2\log_3 15 - \log_3 5$	y		
		$_315 = \log_3 15^2$ seen or implied	B1				
	$\log_3 1$	$5^2 - \log_3 5 = \log_3 \left(\frac{15^2}{5} \right)$	B1dep*	not from wrong w	orking		
	log ₃ .	45 cao	B1	must be 45 not e.g	g. $\frac{225}{5}$;		
				with no wrong wo	5		
(i)	$x^4(3\epsilon$	$(4^{3x}) + 4x^3 e^{3x}$ isw	B1 + B1	each term of the s be a sum of two te	-		
(ii)	$\frac{1}{2+c}$	$\frac{1}{\cos x} \times (-\sin x)$ isw	B2	or B1 for $\frac{1}{2 + \cos k}$ and <i>k</i> a constant	$\frac{1}{x} \times (k \pm \sin x)$		
(iii)		$(\operatorname{in} x) = \cos x \operatorname{soi}$	B1				
	$\frac{\mathrm{d}}{\mathrm{d}x}(1)$	$(+\sqrt{x}) = \frac{1}{2} x^{-\frac{1}{2}}$ soi	B1				
		$\frac{\sqrt{x}}{their\cos x - \left(their\frac{1}{2}x^{-\frac{1}{2}}\right)\sin x}{\left(1 + \sqrt{x}\right)^2}$ isw	B1ft	for correct form o their $\cos x$ and th			
				allow correct use chain rules to obta $\sin x \left(-\left(1 + \sqrt{x}\right)^{-2} \cos x \left(1 + \sqrt{x}\right)^{-1} \right)$	$ \frac{1}{2}x^{\frac{1}{2}} + $		

Page		Mark Scheme		Syllabus	Paputha	
	IGCSE	– May/June 2014		0606	22 3	
	Substitution of either $x - 5$ or $y + 5$ into equation of curve and brackets expanded		M1	brackets; condor	$\frac{w_{WW}}{Pap}$ $\frac{Pap}{22}$ n error in either e or expansion of the omission of = 0, + 5 must be correct	
	$2x^2 - 8x - 10 = 0$ or $2y^2$	+12y = 0 obtained	A1			
	Solving their quadratic		M1	dep on a valid su	ubstitution attempt	
	(−1, −6) oe and (5, 0) oe is	SW	A1*+A1*	or A1 for correct pair of x coordinates or correct pair of y coordinates		
	$\sqrt{72}$ or $6\sqrt{2}$ cao isw		B1dep*			
(i)	$[y =] \frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} (+c) \text{ oe}$		B2	or B1 for $(2x + 1)$	$)^{\frac{1}{2}+1}$	
	$10 = \frac{2}{6} \left(2(4) + 1 \right)^{\frac{3}{2}} + c \text{ oe}$		M1		t to find <i>c</i> ; condone on of power or sigr	
	$y = \frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} + c$ seen and	c = 1 or	A1	must have $y = \dots$ f(x) =	; condone	
(**)	$y = \frac{(2x+1)^{\frac{3}{2}}}{2 \times \frac{3}{2}} + 1$ isw					
(ii)	$\int \left(\frac{1}{3} (2x+1)^{\frac{3}{2}} + 1\right) dx = \frac{1}{15} \left(\frac{1}{3} - \frac{1}{3}\right) dx$	$(2x+1)^{\frac{5}{2}} + x(+const)$	B1 + B1	B1 for $(2x+1)^{\frac{3}{2}+1}$	4	
	J(3) 15	, , , ,		B1 for $\frac{1}{15}(2x +$		
	$\left[\frac{1}{15}(2x+1)^{\frac{5}{2}}+x\right]_{0}^{1.5} =$		B1ft	B1 ft <i>their c</i> from $c \neq 0$		
	$\left[\frac{1}{15}(2x+1)^{\frac{5}{2}}+x\right]_{0}^{1.5} = \left[\frac{1}{15}(2(1.5)+1)^{\frac{5}{2}}+(1.5)\right] - \left[\frac{1}{15}(2(1.5)+1)^{\frac{5}{2}}+(1.5)\right]$	$\left[\frac{1}{15}(2(0)+1)^{\frac{5}{2}}+0\right]$	M1	-F(0) in an attent their y; if their F least their F(1.5)	empt to find F(1.5) mpt to integrate f(0) is 0 must see at h=0; condone + c c is not numerical.	
	$\frac{107}{30}$ oe isw		A1	if decimal 3.57 c e.g. 3.566		

Page	ə 7	Mark Scheme IGCSE – May/June 2014		Syllabus 0606	Pap. Ny Pap. 14 22 e an explicitly
	T 1 '		Mi	1 (1	11 1/1
0 (i)	Takın	ng logs of both sides	M1	any base; must be correct statement	e an explicitly
	$\log y$	$= \log A + x \log b$	A1	correct form; any from incorrect m	base, no recovery
(ii)	<i>b</i> : awrt 3 to one sf isw or awrt 4 to one sf isw		B2	or M1 for $b = e^{their \text{ gradient}}$ soi; their gradient must be correctly evaluated as rise/run	
	A: aw	vrt 0.5 to one sf	B2	or B1 for $A = e^{-0}$.6
				or SC1 for $A = e$ an awrt 0.7)	$^{-0.3} = 0.7$ (giving
(iii)	Evide	ence of graph used at $\ln y = 5.4$ soi	M1	or $\frac{220}{their 0.5} = (the$	eir4) ^x
				or 5.39= <i>their</i> ((1.4)x + their - 0.6
				or $\ln(220) = x \ln(the$	$rir4) + \ln(their0.5)$
	awrt 4	4.4 to two sf	A1		

					WWW. MY Pap. Maths 22	
Page	8	Mark Scheme		Syllabus	Pap	Nat S
		IGCSE – May/June 2014		0606	22 th	0.0
						~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11 (i)	f(x)	> 3 or $[f(x) \in ](3,\infty)$	<b>B</b> 1	condone $y > 3$		str.com
(ii)	<i>x</i> +1		<b>M1</b>	or $y + 1 = 2^x$		
	$f^{-1}(x)$	$) = \log_2(x+1)$	A1	mark final answer or $\log_2(y+1) = 1$		
				$\mathbf{f}^{-1}(x) = \log_2(x + \frac{1}{2})$		
				or for $f^{-1}(x) = \frac{lc}{d}$	$\frac{\log(x+1)}{\log 2}$ (any base	
				for this form)	-	
	Doma	ain $x > 3$	B1ft	ft their range of mathematically interval	f provided valid inequality or	
	Rang	e $f^{-1}(x) > 2$	B1	condone $f(x) > 2$	or $y > 2$	
(iii)	$2^{x}(2^{x})$	(-1) oe isw	<b>B</b> 1	e.g. $(2^x - 1)^2 + (2^x - 1)^2$	2x-1)	
				or $2^{2x} - 2 \times 2^{x} +$	$1 + 2^x - 1$	
	$2^{x}(2^{x})$	$(x-1)=0$ leading to $2^x = 0$ , impossible of	B1	or $2^x = 0$ which of gf	is outside domain	
	2 ^{<i>x</i>} =	$1 \Longrightarrow x = 0$	M1	or $2^{x}(2^{x}-1) = 2^{2x}$ .	$-2^{x}=0$	
				$\begin{bmatrix} 2^{x}(2^{x}-1) = 2^{2x} \\ 2^{2x} = 2^{x} \end{bmatrix} \Rightarrow x =$	= 0	
	0 is n soluti	ot in the domain (and so $gf(x) = 0$ has no ons)	A1			

						WWW. Mynains Pap. Mynainsciou	
Page 9	)	Mark	Scheme		Syllabus	Pap. The Mar	
		IGCSE – M	lay/June 2014		0606	22 4th	
	Solving t by factor	-18x + 24 heir $3x^2 - 18x + 24 \ge 0$ ising or quadratic form ng the square		B1 M1			
	Critical values 2 and 4 $x \le 2, x \ge 4$			A1 A1	<b>A0</b> if spurious at mark final answe	tempt to combine; er	
		g their $\frac{dy}{dx}$ at $x = 3$ $_1m_2 = -1$ to get $m_{normal}$	$_{al} = -\frac{1}{their(-3)}$	M1 M1	must be explicit gradient of norm equation	statement of al ; may be seen in	
	<i>y</i> = 18 so			B1			
		$18 = \left(their \frac{1}{3}\right)(x-3) \text{ or}$ $\frac{1}{3}x + c \text{ and } c = their1$		A1ft	<b>ft</b> their m provide attempt at $m_{normal}$ $m = their m_{tangent}$	<i>l</i> ; no <b>ft</b> if	
	<i>P</i> (0, 17)	cao		B1			