

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/21

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

Page	2 Mark Scheme		Syllabus	Pap. 74 M	
	IGCSE – May/June 2	2014	0606	21 athe	
	Τ				
l	$x^{2} + x > 0$	M1	expands and rear	Mun Muna Pap Mathschot	
	critical values 0 and -1 soi	A1			
	-1 < x < 0	A1	condone space, comma, "and" but not "or" Mark final answer.		
2	$\frac{6}{(1+\sqrt{3})^2}$ or $6 = (a+b\sqrt{3})(1+\sqrt{3})^2$	M1	for dealing with (condone treat negative index a		
	$\frac{6}{4+2\sqrt{3}}$ or $6 = (a+b\sqrt{3})(4+2\sqrt{3})$	M1	for squaring		
	$\frac{6}{4+2\sqrt{3}} \times \frac{4-2\sqrt{3}}{4-2\sqrt{3}}$ AND attempting to me out	ultiply M1	for rationalising or for obtaining a pair of simultaneous equations 4a + 6b = 6 and		
	$6-3\sqrt{3}$ isw	A1	2a + 4b = 0		
3 (i)		B1 B1	tick marks, for e	ked or implied by example or seen e y intercept omitted	
(ii)	x = 1 (only) soi $y = \pm 9 \text{ (only)}$ 0 < k < 9	B1 B1 B1	can be implied b or $k = \pm 9, +9$ or must be strict ind condone space, of "or"	r –9 or both; equality in k ;	
ļ	Attempt to find f(4) or f(1) or division to a remainder	n M1	condone one erro	or	
	128 + 16a + 4b + 12 = 0 or better $(16a + 4b = -140)$	A1			
	2 + a + b + 12 = -12 or better $(a + b) = -26$	5) A1			
	Solves linear equations in <i>a</i> and <i>b</i>	M1			
	a = -3, b = -23	A1	both		

		N			N. M. M.
Page 3		Mark Scheme IGCSE – May/June 2014		Syllabus 0606	Pap. nath arts
		IGCSE – May/June 2014		0000	21 750/0
5	(i)	$2\left(x-\frac{1}{4}\right)^2 + \frac{47}{8}(5.875)$ isw	B3,2,1,0	SyllabusPap060621one mark for each of p, q, r corrects allow correct equivalent values. If B0, then	
	(ii)	$\frac{47}{8}$ is min value when $x = \frac{1}{4}$	B1ft + B1ft	format strict ft <i>their</i> $\frac{47}{8}$ value must be co	values but incorrect and <i>their</i> $\frac{1}{4}$; each prrectly attributed;
				condone $y = \frac{47}{8}$ $\left(\frac{1}{4}, \frac{47}{8}\right)$ for B1	
6	(a)	${}^{8}C_{3} \times 3^{3} \times (\pm 2)^{5} \text{ or } 3^{8} \left[{}^{8}C_{3} \left(\pm \frac{2}{3} \right)^{5} \right]$	M1	condone ${}^{8}C_{5}$, –	$2x^5$
		-48384	A1	can be in expans	sion
	(b) (i)	$1 + 12x + 60x^2$	B2,1,0	÷	nal terms. If B0 , correct unsimplified
	(ii)	Coefficient of x correct or correct ft (12+a) soi Coefficient of x^2 correct or correct ft (60+12a) soi	B1ft B1ft	ft <i>their</i> 1 + 12 <i>x</i> + ft <i>their</i> 1 + 12 <i>x</i> +	
		$1.5 \times their(12 + a) = their(60 + 12a)$ - 4	M1 A1	no x or x^2	
7	(i)	$-\frac{1}{x^2} + \frac{1}{x^{1/2}}$	B1 + B1	or equivalent wi	th negative indices
	(ii)	$\frac{2}{x^3} - \frac{1}{2x^{\frac{3}{2}}}$	B1ft + B1ft	or equivalent wi Strict ft	ith negative indices.
	(iii)	Attempting to solve <i>their</i> $\frac{dy}{dx} = 0$	M1	must achieve <i>x</i> =	= (allow slips)
		x = 1 y = 3	A1	SC2 for (1, 3) st	tated, nfww
		Substitute <i>their</i> $x = 1$ into <i>their</i> $\frac{d^2 y}{dx^2}$; or examines dy	M1	for using <i>their</i> v	alue from $\frac{\mathrm{d}y}{\mathrm{d}x} = 0$
		$\frac{dy}{dx}$ or y on both sides of <i>their</i> $x = 1$			
		Complete and correct determination of nature. If correct, minimum.	A1	must be from co	orrect work

					<u> </u>	· my th	
	Page 4	4	Mark Scheme		Syllabus 0606	Pap	
			IGCSE – May/June 2014		0000	21 750	
8	(i)	2 <i>r</i> +	$r\theta = 30$ giving $\theta = \frac{30 - 2r}{r}$	M1	SyllabusPap.060621correct arc formula + (2)rrearranged		
		Subs	situte <i>their</i> expression for θ into $A = \frac{1}{2}r^2\theta$	M1			
		Corre	ect simplification to $A = 15r - r^2$ AG	A1			
	(ii)		2r = 0	M1	their $\frac{\mathrm{d}A}{\mathrm{d}r} = 0$		
	r = 7.5 56.25 A1 41 A1 $56.3 is A0 unledif M0, then SC$ no working; or				56.3 is A0 unles if M0, then SC2 no working; or S with no working	for $A = 56.25$ with SC1 for $r = 7.5$	
9	(i)	(3, 5)		B1B1	column vector B	80B1	
	(ii) $m_{BD}\left(=\frac{6-4}{1-5}\right) = -\frac{1}{2}$		$\left(=\frac{6-4}{1-5}\right) = -\frac{1}{2}$	M1	can be implied b	by second M1	
		m_{AC}	$\left(=-1 \div -\frac{1}{2}\right)$ seen or used	M1			
		<i>y</i> – 5	=2(x-3) or $y=2x+c$, $c=-1$ or better	A1			
	(iii)		q = 7 [A(1, 1) C(4, 7)] od for finding area numerically	M1 M1	could be in (ii)		
		Meth	bu for finding area numericany	IVII	e.g. $24 - \left(\frac{1}{2} \times 1 \times 3 + \right)$ or shoelace meth	$\frac{1}{2} \times 1 \times 3 + \frac{1}{2} \times 4$	
		15		A1	SC2 for 15 with	no working	
10	(i)	- 2 si	in 2x and $\frac{1}{3}\cos\left(\frac{x}{3}\right)$	B1+B1	each trig functio differentiated	n correctly	
			npt at product rule	M1			
		$\frac{1}{3}\cos \theta$	$s 2x \cos\left(\frac{x}{3}\right) - 2\sin 2x \sin\left(\frac{x}{3}\right)$ isw	A1ft	ft $k_1 \sin 2x$ and	$k_2 \cos\left(\frac{x}{3}\right)$	
		_	1		provided k_{1, k_2}	are non-zero	
	(ii)		x and $\frac{1}{x}$	B1 + B1			
			npt at quotient rule (with given quotient) $x(1 + \ln x) - \frac{1}{2}(\tan x)$	M1	or rearrangement and attempt at p	t to correct product roduct rule	
			$\frac{1}{(1+\ln x) - \frac{1}{x}(\tan x)}{(1+\ln x)^2}$ is w	A1	penalise poor br recovered	acketing if not	

						$\frac{h_{MM}}{Pap}$ $\frac{Pap}{21}$ $\frac{1}{64} = -6\ln 2$	
	Page 5		Mark Scheme		Syllabus	Pap. The Take	
			IGCSE – May/June 2014		0606	21	
11	(a)	2^{x^2-x}	$5x = 2^{-6}$	M1	Or $(x^2 - 5x)\ln 2$	$2 = \ln\left(\frac{1}{64}\right) = -6\ln 2$	23
		$x^2 - x^2$	5x + 6 = 0	M1	their "6"		
			ect method of solution of their 3 term ratic	M1			
		<i>x</i> = 2	z or x = 3	A1			
	(b)		ect change of base to $\frac{\log_a 4}{\log_a 2a}$	B1	base <i>a</i> only at the recover at end	nis stage but can	
			$\frac{\log_a 4}{2 + \log_a a}$	M1	for $\log 2a = \log 2a$	$2 + \log a$	
		\log_a	a = 1 used soi	M1			
		simp	lification to $\log_a 4$	A1			

					www.p	12
Page 6				Syllabus	Paperno	Mary S
		IGCSE – May/June 2014		0606	21	NSCI IS
12 (i)	$f(3) = \frac{6}{4} oe$		M1 A1	or $fg(x) = \frac{2\sqrt{x}}{\sqrt{x+x}}$	$\frac{1}{\frac{1}{1}+1}$	- OUR.COM
(ii)	(ii) $\frac{2\left(\frac{2x}{x+1}\right)}{\frac{2x}{x+1}+1}$		M1	allow omission on numerator or $(\dots) + 1$ in denote both.		t
	A coi	rect and valid step in simplification	dM1	e.g. multiplying n denominator by x simplifying $\frac{2x}{x+}$ $\frac{2x+x+1}{x+1}$	z + 1, , or	
	Corre	ectly simplified to $\frac{4x}{3x+1}$	A1	x+1		
(iii)		Ing $y = g(x)$, ging subject to x and swopping x and y or versa	M1	condone $x = y^2 - \frac{1}{2}$ attempt at correct		
	$g^{-1}(x)$	$x = x^2 - 1$	A1	condone $y = \dots$,	$f^{-1} = \dots$	
	(Don (Rang	main) $x > 0$ ge) $g^{-1}(x) > -1$	B1 B1	condone $y > -1$	$f^{-1} > -1$	
(iv)			B1 + B1 B1	correct graphs; – labelled but could 'one square' idea of reflection line $y = x$ must be	d be implied by or symmetry in	1