

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

				my m
Page 2	Mark Scheme		Syllabus	Pap yn Ma
	IGCSE – May/June 2014		0606	12 aths
1	$\frac{\cos^2 A + (1 + \sin A)^2}{(1 + \sin A)\cos A}$	M1	M1 for obtaining	a single fraction,
	$\frac{\cos^2 A + 1 + 2\sin A + \sin^2 A}{(1 + \sin A)\cos A}$ $= \frac{2(1 + \sin A)}{(1 + \sin A)\cos A}$	M1 DM1	M1 for expansion and use of identity DM1 for fac cancelling of (1 + s	n of $(1 + \sin A)^2$ ctorisation and $(\sin A)$ factor
	$=\frac{2}{\cos A}=2\sec A$	A1	A1 for use of $-\frac{1}{c}$	$\frac{1}{\cos A} = \sec A$ and
	Alternative: $\frac{\cos A (1 - \sin A)}{(1 + \sin A)(1 - \sin A)} + \frac{1 + \sin A}{\cos A}$ $= \frac{\cos A (1 - \sin A)}{1 + \sin A} + \frac{1 + \sin A}{1 + \sin A}$	M1	M1 for multiplyin $\frac{1-\sin A}{1-\sin A}$	ng first term by
	$=\frac{1-\sin^2 A}{\cos^2 A} + \frac{\cos A}{\cos A}$ $=\frac{1-\sin A}{\cos A} + \frac{1+\sin A}{\cos A}$	M1 M1	M1 for $(1 - \sin A)(1 + \sin A)$ identity M1 for simplificat	expansion of (1) and use of ion of the 2 terms
	$=\frac{2}{\cos A} = 2 \sec A$	A1	A1 for use of - c final answer	$\frac{1}{\cos A} = \sec A$ and
(a) (i)	$\bigcirc \bigcirc$	B1		
(i)	\bigcirc	B1		
(b) (i)	6	B1		
(ii)	5	B 1		
(iii)	9	B1		

	mm.n. m.					
	Page 3	Mark Scheme IGCSE – May/June 2014		Syllabus 0606	Pape Unaths	
3	(i)		B1 B1 B1	B1 for shape B1 for $y = 2$ (must have a graph) B1 for $x = -0.5$ and 2 (must have a graph)		
	(ii)	Maximum point occurs when $y = \frac{25}{8}$	M1	M1 for obtaining the maximum p completing differentiation, use or symmetry.	the value of y at point, by either the square, e of discriminant	
		so $k > \frac{25}{8}$	A1	Must have the corr Ignore any upper l	rect sign for A1 imits	
4		$\int_{0}^{a} \sin 3x dx = \frac{1}{3} dx = \frac{1}{3}$	B1,B1	B1 for $k \cos 3$. $-\frac{2}{3}\cos 3x$ only	x only , B1 for	
		$\left[-\frac{2}{3}\cos 3x \right]_{0}^{a} = \frac{1}{3}$	M1	M1 for correct su correct limits into	ubstitution of the their result	
		$\left(-\frac{-1}{3}\cos 3a\right) - \left(-\frac{-1}{3}\right) = \frac{-1}{3}$ $\cos 3a = 0.5$	A1 M1	A1 for correct equations M1 for correct m	ation ethod of solution	
		$3a = \frac{\pi}{3}, \ a = \frac{\pi}{9}$	A1	of equation of the a A1 allow 0.349, answer	form $\cos ma = k$ must be a radian	
5	(i)	$2^{5x} \times 2^{2y} = 2^{-3}$ leads to $5x + 2y = -3$	B1, B1 DB1	B1 for 2^{2y} , B1 dealing with indicating betain given answer	for 2^{-3} , B1 for ices correctly to er	
	(ii)	$7^{x} \times 49^{2y} = 1$ can be written as x + 4y = 0	B1 B1	B1 for either 7^{4y} B1 for $x + 4y = 0$	or 7 [°] seen 0	
		Solving $5x + 2y = -3$ and $x + 4y = 0$ leads to	M1	M1 for solutions simultaneous equations be linear	on of their ations, must both	
		$x = -\frac{2}{3}, y = \frac{1}{6}$	A1	A1 for both, a fractions only	illow equivalent	

	Page 4	Mark Scheme IGCSE – May/June 2014		Syllabus 0606	Papinainsci	aths
6	(a)	YX and ZY	B1,B1	B1 for each, mus	st be in correct	DUA.CC.
	(b)	$\mathbf{B} = \mathbf{A}^{-1} \begin{pmatrix} 3 & 9 \\ -6 & -3 \end{pmatrix},$	M1	M1 for pre-multip	lication by \mathbf{A}^{-1}	
		$= -\frac{1}{3} \begin{pmatrix} 1 & 2 \\ 4 & 5 \end{pmatrix} \begin{pmatrix} 3 & 9 \\ -6 & -3 \end{pmatrix}$	B1,B1	B1 for $-\frac{1}{3}$, B1 for	$\operatorname{pr} \left(\begin{array}{cc} 1 & 2 \\ 4 & 5 \end{array} \right)$	
		$= -\frac{1}{3} \begin{pmatrix} -9 & 3\\ -18 & 21 \end{pmatrix} \text{ or } \begin{pmatrix} 3 & -1\\ 6 & -7 \end{pmatrix}$	DM1 A1	DM1 for atten multiplication A1 allow in either	npt at matrix	
		Alternative method:				
		$ \begin{pmatrix} 5 & -2 \\ -4 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 3 & 9 \\ -6 & -3 \end{pmatrix} $	M1	M1 for a comp obtain 4 equations	lete method to	
		Leads to $5a - 2c = 3$, $5b - 2d = 9$ -4a + c = -6, $-4b + d = -3$	A2,1,0	-1 for each incorrect	ct equation	
		Solutions give matrix	M1	M1 for solution to	find 4 unknowns	
		$-\frac{1}{3} \begin{pmatrix} -9 & 3 \\ -18 & 21 \end{pmatrix} \text{or} \begin{pmatrix} 3 & -1 \\ 6 & -7 \end{pmatrix}$	A1	A1 for a correct, fi	nal matrix	

					mm.n. M	
Page	5	Mark Scheme		Syllabus	Pap	732
		IGCSE – May/June 2014		0606	12 th	S. 20
			-			C/01.
7 (i)	sin or	$\frac{\theta}{2} = \frac{6}{8}, \ \frac{\theta}{2} = 0.8481 \text{ or better}$ $12^2 = 8^2 + 8^2 - 128 \cos \theta$	M1	M1 for a complete either θ or $\frac{\theta}{2}$	e method to find	40.Com
	$\theta =$	1.6961 or better	A1	Answer given.		
	$\left \begin{array}{c} \text{or} \\ \frac{1}{2} \times \end{array} \right $	using areas $12 \times 2\sqrt{7} = \frac{1}{2}8^2 \sin \theta$ oe				
	sin	$\theta = 0.9922$, $\theta = 1.4455$ or 1.6961	M1 A1	M1 for using the triangle in 2 difference A1 for choosing the second sec	he area of the ent forms e correct angle.	
(ii)	Arc	$\text{length} = (2\pi - 1.696) \times 8$	$(2\pi - 1.696) \times 8$ M1 M1 for correct attempt at a n or major arc length			
	(36.	697 or 36.7)	A1	A1 for correct m allow unsimplified	ajor arc length,	
	Peri	meter = $12 + (2\pi - 1.696) \times 8$ = 48.7	A1	A1 for 48.7 or bette	er	
(iii)	Are	$a = \frac{8^2}{2} \left(2\pi - 1.696 \right) + \frac{8^2}{2} \sin 1.696$	M1,M1	M1 for correct atte of major sector	empt to find area	
		=178.5, 178.6, awrt179	A1	M1 for correct atte of triangle, using an	empt to find area ny method	
	Alte	ernative:				
	Are	$a = \pi 8^{2} - \left(\frac{1}{2}8^{2}(1.696) - \frac{8^{2}}{2}\sin 1.696\right)$		M1 for attempt at area of minor secto M1 for area of trian	area of circle – r ngle	

Page 6	Mark Scheme		Syllabus	Pap
	IGCSE – May/June 201	IGCSE – May/June 2014		12 aths
(a) (i)	720	B1		
(ii)	240	B1		
(iii)	Starts with either a 2 or a 4: 48 ways	B1	allow unevaluated	
	Does not start with either a 2 or a 4: 96 ways (i.e. starts with 1 or 5)	B1	allow unevaluated	
	Total = 144	B1	must be evaluated	
	Alternative 1:			
	Ends with a 2, starts with a 1,4 or 5 : 72 ways Ends with a 4, starts with a 1,2 or 5 : 72 ways Total =144	B1 B1 B1		
	Alternative 2:			
	$240 - (2 \times 2 \times {}^{4}P_{3}) \text{ or } (4 \times {}^{4}P_{3} \times 2) - (2 {}^{4}P_{3})$ = 144	B2 B1	B2 for correct e allow <i>P</i> notation	expression seen,
	Alternative 3:			
	${}^{3}P_{1} \times {}^{4}P_{3} \times {}^{2}P_{1}$ or $3 \times 4 \times 2$ = 144	B2 B1	Allow <i>P</i> notation h	ere, for B2
(b)	With twins : ${}^{16}C_4$ (=1820)	B1		
	Without twins: ${}^{16}C_6 \ (=8008)$	B1		
	Total: 9828	B1		
	Alternative:			
	$ \begin{array}{c} {}^{18}C_6 - (2 \times {}^{16}C_5) \\ = 9828 \end{array} $	B1,B1 B1	B1 for ${}^{18}C_6$ –, ,	B1 for $2 \times {}^{16}C_5$

					mm M
Page 7	/	Mark Scheme IGCSE – May/June	2014	Syllabus 0606	Pap Maths
(i)	h = - A =	$\frac{4000}{\pi r^2} \text{ or } \pi r^2 h = 4000$ $2\pi r h + 2\pi r^2$	B1		
	<i>A</i> =	$2\pi r \frac{4000}{\pi r^2} + 2\pi r^2$	M1 A1	M1 for substitution their equation for A A1 Answer given	n of <i>h</i> or <i>πrh</i> into 4
(ii)	$\frac{\mathrm{d}A}{\mathrm{d}r}$ =	$=-\frac{8000}{r^2}+4\pi r$	B1, B1	B1 for each term c	orrect
	Whe	$n\frac{dA}{dr} = 0$, $r^3 = \frac{8000}{4\pi}$	M1	M1 for equating attempt to find r^3	g to zero and
	leadi	ng to $A = 1395, 1390$	M1 A1	M1 for substituti obtain <i>A</i> . A1 for 1390 or aw	on of their r to rt 1395
	$\frac{\mathrm{d}^2 A}{\mathrm{d}r^2}$ whice	$r = \frac{16000}{r^3} + 4\pi$, h, is positive so a minimum.	√B1	$\sqrt{\mathbf{B1}}$ for a complete and conclusion.	te correct method

		·?,		
Page	8 Mark Schem	e - 2014	Syllabus	Pape That
	IGCSE – May/Juli	e 2014	0000	12 7/3
0 (i)	$Velocity = 26 \times \frac{1}{13} (5i + 12j)$	M1	M1 for $\frac{1}{13}(5i+12)$	j)
	$= 10\mathbf{i} + 24\mathbf{j}$	A1	15	
	Alternative 1:			
	$ 10\mathbf{i} + 24\mathbf{j} = \sqrt{10^2 + 24^2}$ = 26	M1	M1 for working fr to obtain the given	om given answer speed
	Showing that one vector is a multip other, hence same direction	ble of the A1	A1 for a completel	y correct method
	Alternative 2:			
	$\sqrt{5^2 + 12^2} = 13$, $13k = 26$, so $k = 2$ Velocity $= 2(5\mathbf{i} + 12\mathbf{j})$, Velocity $= 10\mathbf{i} + 24\mathbf{j}$		M1 for attempt to obtain the 'multiple' and apply to the direction vector	
			A1 for a completel	A1 for a completely correct method
	Alternative 3:			
	Use of trig: $\tan \alpha = \frac{12}{5}$, $\alpha = 67.4^{\circ}$			
	Velocity $26\cos 67.4^\circ \mathbf{i} + 26\sin 67.4\mathbf{j}$	M1	M1 for reaching th	is stage
	Velocity = 10i + 24j	A1	A1 for a completel	y correct method
(ii)	Position vector = $4(10\mathbf{i} + 24\mathbf{j})$ or $40\mathbf{i} + 96\mathbf{j}$	B1	Allow either form	for B1
(iii)	(40i + 96j) + (10i + 24j)t oe	M1	M1 for <i>their</i> (ii)+	(10i + 24j)t or
		A 1	$(10\mathbf{i} + 24\mathbf{j}) \times (t+4)$	omler
		AI	AI correct answer	only
(iv)	(120i + 81j) + (-22i + 30j)t oe	B1		
(v)	40 + 10t = 120 - 22t or 96 + 24t = 81 + 30t	M1	M1 for equating li	ke vectors
	t = 2.5 or 18.30	A1	A1 Allow for $t = 2$.5
	Position vector $= 65i + 156j$	DM1	DM1 for use of position vector	<i>t</i> to obtain
		A1		

Page 9	Mark Scheme IGCSE – May/June 2014	l .	Syllabus 0606	Pap. Thymaths	
1 (a)	$\tan x(\tan x + 5) = 0$ $\tan x = 0, \qquad x = 0^{\circ}, 180^{\circ}$ $\tan x = -5, \qquad x = 101.3^{\circ}$	B1,B1 B1	B1 for each , must work	be from correct	
(b)	$2(1-\sin^2 y) - \sin y - 1 = 0$ $2\sin^2 y + \sin y - 1 = 0$ $(2\sin y - 1)(\sin y + 1) = 0$ $\sin y = \frac{1}{2} + y = 20^{\circ} + 150^{\circ}$	M1	M1 for use of correct identity and attempt to solve resulting 3 term quadratic equation.		
•	$\sin y = \frac{1}{2}, y = 30, 130$ $\sin y = -1, y = 270^{\circ}$	A1			
(c)	$\cos\!\left(2z - \frac{\pi}{6}\right) = \frac{1}{2}$	M1	M1 for dealing we and obtaining $\frac{\pi}{3}$ or	th sec correctly	
	$\left(2z - \frac{\pi}{6}\right) = \frac{\pi}{3}$ $z = \frac{\pi}{4} \text{ or } 0.785 \text{ or better}$	A1			
	$\left(2z - \frac{\pi}{6}\right) = \frac{5\pi}{3}$	M1	M1 for obtaining a $\left(2z - \frac{\pi}{6}\right) = 2\pi - th$	second equation $eir \frac{\pi}{3}$ oe	
	$z = \frac{11\pi}{12}$ or 2.88 or better	A1		-	