

MARK SCHEME for the May/June 2014 series

0606 ADDITIONAL MATHEMATICS

0606/11

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2014 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

				Papinginging
Page 2	Mark Scheme		Syllabus	Pap The Ast
	IGCSE – May/June 2014		0606	11 41/16
				11 thschoud
1	$LHS = \frac{\sin \theta}{\theta} + \frac{\cos \theta}{1 + \sin \theta}$	B1	B1 for use of $\tan \theta$	$=\frac{\sin\theta}{\theta}$

1	$LHS = \frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{1 + \sin \theta}$	B1	B1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$=\frac{\sin\theta(1+\sin\theta)+\cos^2\theta}{\cos\theta(1+\sin\theta)}$	M1	M1 for attempt to obtain a single fraction
	$=\frac{1+\sin\theta}{\cos\theta(1+\sin\theta)}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta = 1$
	$=\frac{1}{\cos\theta} \text{ leading to } \sec\theta$	A1	A1 for 'finishing off'
	Alternative solution: LHS = $\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta (1 - \sin \theta)}{(1 + \sin \theta)(1 - \sin \theta)}$	B1	B1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$=\frac{\sin\theta}{\cos\theta}+\frac{\cos\theta(1-\sin\theta)}{\cos^2\theta}$	M1	M1 for multiplication by $(1 - \sin \theta)$
	$=\frac{\sin\theta}{\cos\theta}+\frac{(1-\sin\theta)}{\cos\theta}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta = 1$
	$=\frac{1}{\cos\theta} \text{ leading to } \sec\theta$	A1	A1 for 'finishing off'
	Alternative solution: LHS = $\frac{\tan \theta (1 + \sin \theta) + \cos \theta}{1 + \sin \theta}$	M1	M1 for attempt to obtain a single fraction
	$=\frac{\frac{\sin\theta}{\cos\theta} + \frac{\sin^2}{\cos\theta} + \cos\theta}{1 + \sin\theta}$	B1	B1 for use of $\tan \theta = \frac{\sin \theta}{\cos \theta}$
	$=\frac{\sin\theta+\sin^2\theta+\cos^2\theta}{\cos\theta(1+\sin\theta)}$		
	$=\frac{1+\sin\theta}{\cos\theta(1+\sin\theta)}$	DM1	DM1 for use of $\sin^2 \theta + \cos^2 \theta = 1$
	$=\frac{1}{\cos\theta} \text{ leading to } \sec\theta$	A1	A1 for 'finishing off'

					Manning Institution
	Page 3	Mark Scheme		Syllabus	Paper
		IGCSE – May/June 2014		0606	<u>11</u>
2	(i)		M1	M1 for finding the n	nodulus of either
2	(1)	$ \mathbf{a} = \sqrt{4^2 + 3^2} = 5$ $ \mathbf{b} + \mathbf{c} = \sqrt{(-3)^2 + 4^2} = 5$	IVII	a or $\mathbf{b} + \mathbf{c}$	nodulus of either
		$ \mathbf{b} + \mathbf{c} = \sqrt{(-3)^2 + 4^2} = 5$			1
			A1	A1 for completion	
	(ii)	$\lambda \begin{pmatrix} 4\\ 3 \end{pmatrix} + \mu \begin{pmatrix} 2\\ 2 \end{pmatrix} = 7 \begin{pmatrix} -5\\ 2 \end{pmatrix}$			
		$4\lambda + 2\mu = -35$ and $3\lambda + 2\mu = 14$	M1	M1 for equating obtaining 2 linear eq	like vectors and quations
			DM1		n of simultaneous
		leading to $\lambda = -49$, $\mu = 80.5$	A1	equations A1 for both	
3	(a)		B1 B1 B1	B1 for each	
	(b) (i)	2	B1		
	(ii)	0	B1		
4		$k(4x-3) = 4x^2 + 8x - 8$	M1		e line and the curve
		$4x^2 + x(8 - 4k) + 3k - 8 = 0$		and attempt to c equation in k	obtain a quadratic
		$b^2 - 4ac = (8 - 4k)^2 - 16(3k - 8)$	DM1	DM1 for use of b^2 .	-4ac with k
		$=16k^2 - 112k + 192$			
		$= 16k^{2} - 112k + 192$ b ² - 4ac < 0, k ² - 7k + 12 < 0	DM1		of a 3 term quadratic on both previous M
		critical values $k = 3, 4$	A1	A1 for both critical	values
		$\therefore 3 < k < 4$	A1	A1 for the range	
5	(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\mathrm{e}^{x^2}$	B1B1	B1 for e^{x^2} , B1 for	$r 2xe^{x^2}$
	(ii)	$\frac{1}{2}e^{x^2}$	M1A1	M1 for ke^{x^2} A1 for	$r \frac{1}{2}e^{x^2}$
	(iii)	$\left(\frac{1}{2}e^4\right) - \left(\frac{1}{2}\right) = 26.8$	DM1 A1	DM1 for correct use A1 for 26.8, allow e	

Page 4	Mark Scheme IGCSE – May/June 2014		Syllabus 0606	Pap. Munaths cloud. Correct elements on U.Com
6 (i)	$\mathbf{AB} = \begin{pmatrix} 10 & 19 \\ 32 & 37 \\ 14 & 14 \end{pmatrix}$	M1 A1	M1 for at least 3 of 3×2 matrix A1 for all correct	correct elements on Com
(ii)	$\mathbf{B}^{-1} = \frac{1}{7} \begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}$	B1 B1	B1 for $\frac{1}{7}$, B1 for $\left(-\frac{1}{7}\right)$	$\begin{pmatrix} 5 & -1 \\ -3 & 2 \end{pmatrix}$
(iii)	$2\begin{pmatrix} 2 & 1 \\ 3 & 5 \end{pmatrix}\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -3 \\ -22 \end{pmatrix}$	M1	M1 for obtaining in	1 matrix form
	$\binom{x}{y} = \frac{1}{7} \binom{5 - 1}{-3 2} \binom{-1.5}{-11} = \frac{1}{7} \binom{3.5}{-17.5}$	M1	M1 for pre-multiply	ying by B ⁻¹
	x = 0.5, y = -2.5	A1	A1 for both	
7 (i)	$y = 2x^2 - \frac{1}{x+1}(+c)$	B1 B1	B1 for each correct	term
	when $x = \frac{1}{2}$, $y = \frac{5}{6}$ so $\frac{5}{6} = \frac{1}{2} - \frac{2}{3} + c$ leading to $c = 1$	M1 A1	M1 for attempt to f least 1 of the previo Allow A1 for $c = 1$	
	$\left(y = 2x^2 - \frac{1}{x+1} + 1\right)$			
(ii)	When $x = 1, y = \frac{5}{2}$	M1	M1 for using $x = 1$	in their (i) to find y
	$\frac{dy}{dx} = \frac{17}{4}$ so gradient of normal $= -\frac{4}{17}$	B1	B1 for gradient of n	normal
	Equation of normal $y - \frac{5}{2} = -\frac{4}{17}(x-1)$	DM1	DM1 for attempt at	t normal equation
	(8x+34y-93=0)	A1	A1 – allow unsimpl (fractions must not	

	Page 5	Mark Scheme		Syllabus	Pan My My
	l uge o	IGCSE – May/June 2014		0606	11 3th
8	(i)	$\log p = n \log V + \log k$	B1	B1 for statement, bu later work.	Pap. My nainscloud.
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		$\begin{array}{ c c c c c c c c c c c c c c c c c c c$			
		$\log P \uparrow$			
			M1 A2,1,0	M1 for plotting a su -1 for each error in	
	(ii)	Use of gradient = n n = -1.5 (allow -1.4 to -1.6)	DM1 A1	DM1 for equating r	numerical gradient to
	(iii)	Allow 13 to 16	DM1 A1	DM1 for use of substitution into <i>the</i> .	of <i>their</i> graph or <i>ir</i> equation.
9	(a)	Distance travelled = area under graph = $\frac{1}{2}(60 + 20) \times 12 = 480$	M1 A1	•	that area represents and attempt to find
	(b)		B1 B1 B1	their '25'	ms ⁻¹ for $0 \le t \le 6$ zero for <i>their</i> '6' to ms ⁻¹ for $25 \le t \le 30$
	(c) (i)	$v = 4 - \frac{16}{t+1}$	M1	M1 for attempt at di	ifferentiation
		When $v = 0$, $t = 3$	DM1 A1	DM1 for equating attempt to solve	velocity to zero and
	(ii)	$a = \frac{16}{(t+1)^2}$ $0.25(t+1)^2 = 16$	M1	M1 for attempt at equating to 0.25 wit	t differentiation and h attempt to solve
		$0.25(t+1)^2 = 16$ t = 7	A1		

Page 6	Mark Scheme IGCSE – May/June 2014		Syllabus Pap Mainschour
10 (a)	1 digit even numbers 2	B1	
	2 digit even numbers $4 \times 2 = 8$	B1	
	3 digit even numbers $3 \times 3 \times 2 = 18$	B1	
	Total = 28	B1	
(b) (i)	3M 5W = 35 4M 4W = 175 5M 3W = 210	B1 B1 B1	
	Total = 420	B1	B1 for addition to obtain final answer, must be evaluated.
	or ${}^{12}C_8 - 6M \ 2W - 7M \ 1W$ 495 - 70 - 5 = 420		or: as above, final B1 for subtraction to get final answer
(ii)	Oldest man in, oldest woman out and vice-versa		
	$^{10}C_7 \times 2 = 240$	B1, B1	B1 for ${}^{10}C_7$, B1 for realising there are 2
	Alternative:1 man out1 woman in6 men4 women		identical cases
	6M 1W : ${}^{6}C_{6} \times {}^{4}C_{1} = 4$		
	5M 2W : ${}^{6}C_{5} \times {}^{4}C_{2} = 36$		
	$4M \ 3W : \ {}^{6}C_{4} \times {}^{4}C_{3} = 60$ $3M \ 4W : \ {}^{6}C_{3} \times {}^{4}C_{4} = 20$		
	Total = 120	B1	All separate cases correct for B1
	There are 2 identical cases to consider, so 240 ways in all.	B1	B1 for realising there are 2 identical cases, which have integer values

Page 7	Mark Scheme		Syllabus 0606	Pap. mar
	IGCSE – May/June 2014	IGCSE – May/June 2014		<u>11</u>
1 (a)				lution and no extra
	$5\sin 2x + 3\cos 2x = 0$ $\tan 2x = -0.6$	M1 DM1	solutions within th M1 for use of tan DM1 for dealing w	C
	$2x = 149^{\circ}, 329^{\circ}$ $x = 74.5^{\circ}, 164.5^{\circ}$	A1,A1	A1 for each	
	Alternatives: $sin(2x+31^\circ) = 0$ or $cos(2x-59^\circ) = 0$	M1	M1 for either, then	mark as above
(b)	$2\cot^2 y + 3\csc ecy = 0$			
	$2(\csc^2 y - 1) + 3\csc ecy = 0$ $2\csc^2 y + 3\csc ecy - 2 = 0$	M1	M1 for use of correct identity	
	$(2\csc ecy - 1)(\csc ecy + 2) = 0$	M1	M1 for attempt to quadratic equation	o factorise a 3 term
	One valid solution $\cos \exp = -2$, $\sin y = -\frac{1}{2}$			
	$y = 210^{\circ}, 330^{\circ}$	A1,A1	A1 for each	
	Alternative:			
	$2\frac{\cos^2 y}{\sin^2 y} + \frac{3}{\sin y} = 0$	M1	M1 for use of $\cot y$	$y = \frac{\cos y}{\sin y}$ and
	leads to $2\sin^2 y - 3\sin y - 2 = 0$		$\cos \exp = \frac{1}{\sin y}$	
	and $\sin y = -\frac{1}{2}$ only	M1	M1 for attempt to quadratic equation	o factorise a 3 term
	$y = 210^{\circ}, 330^{\circ}$	A1A1		
(c)	$3\cos(z+1.2) = 2\cos(z+1.2) = \frac{2}{3}$			
	(z+1.2) = 0.8411, 5.442, 7.124	M1		der of operations to
	<i>z</i> = 4.24, 5.92	A1 A1A1	end up with 0.8411 radians or better A1 for one of 5.441 or 7.124 (or better) A1 for each valid solution	