

Cambridge Assessment International Education Cambridge Ordinary Level

4024/21 October/November 2017

www.mymathscloud.com

Paper 2 MARK SCHEME Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is a registered trademark.

Abbreviations

cao	correct answer only
dep	dependent
FT	follow through after error
isw	ignore subsequent working
oe	or equivalent
SC	Special Case
nfww	not from wrong working
soi	seen or implied
	_

Question	Answer	Marks	Partial Marks
1(a)(i)	503.5[0] final answer	3	M2 for 12.50 × 38 × 1.06 oe or 12.50 × 38 × 0.06 oe or M1 for 12.50 × 38 or 12.50 × 1.06 oe soi or 12.50 × 0.06 oe soi
1(a)(ii)	12	2	M1 for (525 – 462) ÷ 525 oe After M0, SC1 for answer 88
1(a)(iii)	2400 nfww	2	M1 for $1.03x = 2472$ soi
1(b)	192	3	M1 for 520 × 0.74 M1 for (<i>their</i> 384.8 – 260) ÷ 0.65
2(a)	14.35 or 14.4	3	B1 for use of correct midpoints soi M1 for (2.5 × 35 + 7.5×42 + 15×30 + 25×28 + 40 × 15) ÷ 150
2(b)	Correct histogram with linear scale on frequency density axis	3	 B2 for all 5 bar heights correct with frequency density axis scaled OR B1 for at least 3 correct heights drawn or 3 correct frequency densities calculated B1 for 5 bars correct width and position
2(c)	18 to 20	2	M1 for (15 + 14) ÷ 150
3(a)	040	1	
3(b)	$BC = \frac{1}{\sqrt{25^2 + 38^2 - 2 \times 25 \times 38\cos(360 - 220)}}$	M2	or M1 for $25^2 + 38^2 - 2 \times 25 \times 38 \times \cos(360 - 220)$
	BC = 59.36 to 59.37	A1	

4024/21	Cambridge O Leve PUBLI	el – Mark SHED	Scheme October/ Mun Manains
Question	Answer	Marks	Partial Marks
3(c)	204.1 to 204.3[2]	4	B3 for 24.1 to 24.3[2] OR M2 for sin $B = \frac{38 \times \sin(360 - 220)}{59.4}$ or M1 for $\frac{\sin B}{38} = \frac{\sin(360 - 220)}{59.4}$ and M1 for 180 + <i>their B</i>
4(a)	$\frac{5}{9}$ oe	1	
4(b)(i)	$\frac{25}{81}$ oe	1	
4(b)(ii)	$\frac{40}{81}$ oe	2	M1 for $\frac{their 5}{9} \times \frac{(9 - their 5)}{9}$ soi or $\frac{their 5}{9} \times \frac{4}{9}$
4(c)	$\frac{4}{9}$ oe nfww	3	M2 for $\frac{5}{9} \times \frac{4}{8} + \frac{4}{9} \times \frac{3}{8}$ or M1 for $\frac{4}{9} \times \frac{3}{8}$ or $\frac{5}{9} \times \frac{4}{8}$
5(a)	-3 , 2 nfww	3	M1 for $y^2 + 5y = 4y + 6$ M1 for $(y + 3)(y - 2) [= 0]$
5(b)	$t = \frac{2p-1}{4+p}$ or $t = \frac{1-2p}{-4-p}$ final answer	3	M1 for $p(2-t) = 4t + 1$ or better M1FT for $2p - 1 = 4t + pt$ M1FT for completion to explicit formula for t
			Max 2 marks if final answer incorrect
5(c)	$\frac{3x-2}{x+4}$ final answer	3	B1 for $(3x - 2)(x - 4)$ seen B1 for $(x + 4)(x - 4)$ seen
6(a)(i)	[<i>AĈB</i> =] 38	1	
6(a)(ii)	$[A\hat{E}F =]$ 38, angles in same segment are equal	1	Strict FT <i>their</i> (i)
6(a)(iii)	$[C\hat{D}E =] 112$	1	
6(a)(iv)	$[B\hat{C}D =]106$	2	FT 180 – <i>their CDE</i> + <i>their ACB</i> M1 for $\hat{ACD} = 180 - their 112$ soi

4024/21	Cambridge O Lev PUBL	/el – Mark . ISHED	Scheme October/ MWW. My Markets
Question	Answer	Marks	Partial Marks
6(b)	156	3	B1 for sum of angles in pentagon = 540 soi M1 for $8x + 124 = their 540$ oe
6(c)	105.5	2	B1 for two of 65.5, 131.5 and 57.5 seen After B0 , SC1 for answer 108.5
7(a)(i)	y = -2x + 5 oe	2	B1 for $y = -2x + c$ oe or for $y = mx + 5$ oe or M1 for gradient $= \frac{5+3}{0-4}$ oe
7(a)(ii)	y = -2x - 1 oe FT <i>their</i> gradient from (a)(i)	2	B1 for answer $y = their (-2)x + k$, where $k \neq their 5$ or M1 for $3 = their (-2) \times -2 + k$ oe
7(b)(i)	3.5	1	
7(b)(ii)	Correct smooth curve through 8 correct points	3	B2FT for 7 or 8 points correctly plotted or B1FT for 5 or 6 points correctly plotted
7(b)(iii)	Clear correct tangent drawn at (1, 1)	M1	
	-2.4 to -1.6	A1	
7(b)(iv)	0.6 to 0.8 and 4.2 to 4.4	2	FT reading from <i>their</i> graph at $y = 2$ B1 for one correct or for $y = 2$ soi
8(a)	$[x^2 =] 6^2 + 12^2$	M1	or $[x=]\sqrt{6^2+12^2}$
	[x =] 13.41[6] or 13.42	A1	
8(b)	478.7 to 479.4	3	M1 for $\left[\frac{1}{2}\times\right]4\times\pi\times6^2$ seen M1 for $\pi\times6\times13.4$ seen After 0 scored, SC1 for consistent use of $r = 3$ in formula for [hemi]sphere and cone
8(c)	904.7 to 905 nfww	3	M1 for $\left[\frac{1}{2}\times\right]\frac{4}{3}\times\pi\times6^3$ seen M1 for $\frac{1}{3}\times\pi\times6^2\times12$ seen After 0 scored, SC1 for consistent use of $r = 3$ in formula for [hemi]sphere and cone
8(d)(i)	4310 or FT 9 × <i>their</i> (b)	2	M1 for $\left(\frac{6}{2}\right)^2$ soi
8(d)(ii)	113 or FT $\frac{1}{8} \times their$ (c)	2	M1 for $\left(\frac{1}{2}\right)^3$ soi

4024/21	Cambridge O Leve PUBLI	el – Mark SHED	Scheme October/
Question	Answer	Marks	Partial Marks
9(a)	7 cao	2	M1 for $\frac{12}{3000} \times 1750$ oe
9(b)(i)	$\frac{2500}{x}$	1	
9(b)(ii)	$\frac{2500}{x} - \frac{2500}{x+20} = 15$	M1	Or equivalent unsimplified equation
	2500(x+20) - 2500x = 15x(x+20)	M1	FT elimination of <i>their</i> fractions with algebraic denominators
	Correct simplification leading to $3x^2 + 60x - 10\ 000 = 0\ AG$	A1	
9(b)(iii)	48.59 and –68.59 final answer	3	B1 for $\sqrt{60^2 - 4 \times 3 \times -10000}$ soi B1 for $\frac{-60 \pm \sqrt{their 123600}}{2 \times 3}$
9(b)(iv)	36 minutes 27 seconds	3	M2 for $\frac{2500}{their48.59 + 20}$ or M1 for $\frac{2500}{their48.59}$
10(a)(i)	Triangle <i>B</i> at $(2, -3)$, $(3, -3)$, $(3, -5)$	2	B1 for translation of correct triangle B
10(a)(ii)	Triangle <i>C</i> at (3, 3), (3, 9), (6, 3)	2	B1 for two vertices correct or for $ \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 3 \end{pmatrix} oe $
10(a)(iii)	$\begin{pmatrix} \frac{1}{3} & 0\\ 0 & \frac{1}{3} \end{pmatrix} oe$	1	
10(a)(iv)	Enlargement Centre $(3, -1.5)$ SF $-\frac{1}{3}$	3	B1 for each
10(b)(i)	$\begin{pmatrix} 4\\8 \end{pmatrix}$	2	B1 for one component correct or M1 for $2\begin{pmatrix} 6\\ 3 \end{pmatrix} - \begin{pmatrix} 8\\ -2 \end{pmatrix}$ oe After 0 scored, SC1 for answer $\begin{pmatrix} -4\\ -8 \end{pmatrix}$
10(b)(ii)	$\begin{pmatrix} 9\\ 0 \end{pmatrix}$	2	B1 for one component correct or M1 for $-\frac{3}{4}(their \ \overline{SR})$ or $\frac{1}{4}(their \ \overline{SR})$ soi

4024/21	Cambridge O Leve PUBLI	el – Mark SHED	Scheme October/1 Mynains	ALLIS STATES
Question	Answer	Marks	Partial Marks	Jud .
11(a)	$\angle ARB = \angle PRQ$, [vertically] opposite $\angle RAB = \angle RQP$, alternate [angles] $\angle RBA = \angle RPQ$ alternate [angles] $\triangle ARB$ and $\triangle QRP$ similar, equal angles	3	B1 for one pair of angles stated with reason or for two pairs with no reasons or incorrect reasonsB1 for a further correct pair of angles with reason	COM
11(b)(i)	[AQ =] 8.72 or 8.717[]	2	M1 for $\cos 55 = \frac{5}{AQ}$ or $\sin 35 = \frac{5}{AQ}$ oe	
11(b)(ii)	[AR =] 7.37[2]	2	M1 for $\cos 35 = \frac{AR}{9}$ or $\sin 55 = \frac{AR}{9}$ oe	
11(b)(iii)	[Area <i>ARB</i> =] 18.8 to 19.2[] or FT <i>their AR</i>	2	M1 for $\frac{1}{2} \times their 7.37 \times 9 \times \sin 35$ oe Or $\frac{1}{2} \times their 7.37 \times \sqrt{9^2 - (their 7.37)^2}$	
11(b)(iv)	19.6 to 19.7 nfww 5.16 7.37 0.942 1.34 0.942 0	3	M1 for tan $35 = \frac{PR}{their RQ}$ oe or $\frac{PR}{their RQ} = \frac{their RB}{their AR}$ oe where their $RQ = (their 8.72 - their 7.37)$ M1 for their area $ARB + \frac{1}{2} \times their RQ \times their PR$	