

Cambridge International Examinations Cambridge Ordinary Level

MATHEMATICS (SYLLABUS D)

4024/21 October/November 2016

www.mymathscloud.com

Paper 2 MARK SCHEME

Maximum Mark: 100

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

s P. mathscioud.com **Syllabus** Page 2 **Mark Scheme** Cambridge O Level – October/November 2016 4024 Question Mark Part marks Answers 133 1 1 (a) (i) 20 1 (ii) **M1** for $\frac{1995}{105}$ 1900 2 (iii) 1 **(b)** 22 22 or 10 22 pm **M1** for $\frac{1000000}{4 \times 38}$ oe 6600 final answer 2 (c) 8.93 2 **B1** for 100.5 or 11.25 used (d) 2 2.71 or 2.711[...] 1 **(a)** 1 **(b)** 3p(3p-2q) final answer $9a^2 + 6ab + b^2$ final answer 1 (c) $\frac{6t+1}{(2t+1)(3t+1)}$ or $\frac{6t+1}{6t^2+5t+1}$ final 3 **M1** for 4(3t+1) - 3(2t+1) soi (d) answer **B1** for 6t + 1 seen as numerator or (2t+1)(3t+1) oe seen as denominator **M1** for $n < -\frac{9}{4}$ oe 2 -3, -4, -5**(e)** Or **SC1** for answer -3, -4, -5, -6 or answer -2, -3, -4, -5**(f)** 50 3 **B1** for x + (x - 12) + (2x - 24) = 112 oe and **B1** for x = 37or M1 correct evaluation of amount for Chuku using *their* expression and *their* x 3 1 (a) (i) $[\angle PBQ =] 180 - 2a \text{ or } 2(90 - a)$ (ii) $\left[\angle APD = \right] 90 - a$ 1 1 (iii) $[\angle DAP =] 2a$ 1 (iv) $\left[\angle ADP = \right] 90 - a$

1

2

M1 for $4.7 \times \sin 54$ oe

3.3

30.4[19..]

(b) (i)

(ii)

Page 3	Mark Scheme Cambridge O Level – October/Nov	Syllabus P. Unath 2016 4024 21	
Question	Answers	Mark	Part marks
(a)	422 or 423 or 422.4 to 422.6	2	M1 for $\frac{1}{2} \times 4 \times \pi \times (9 - 0.8)^2$ Or SC1 for answer 508.9 to 509.0
(b)	440 or 440.0 to 440.2	5	B1 for 8.2 used B1 for $\frac{2}{3}\pi r^3$ used M1 for Bowl: $\left[\frac{1}{2}\right]\frac{4}{3} \times \pi \times 9^3 - \left[\frac{1}{2}\right]\frac{4}{3} \times \pi \times (9 - 0.8)^3$ oe M1 for Cylinder: $\pi \times 3.8^2 \times 1.5$
(a)	3.76 to 3.77	2	M1 for $\frac{120}{360} \times 2 \times \pi \times 1.8$ oe
(b)	9.99 to 10.01	3ft	FT their (a) + 6.235[] M2 for $[OB =]$ 1.8 tan 60 oe or M1 for tan $60 = \frac{[]}{1.8}$ oe
(c) (i)	Full calculation, including calculation for OC = 3.6 and radius = $TC + OC$ AG	2	M1 for $\cos 60 = \frac{1.8}{OC}$ oe or $OC^2 = 1.8^2 + their OB^2$
(ii)	2.28	1ft	FT 5.4 – their OB

Q

1.8

Č

T

Syllabus	
4024	

Page 4	Mark Scheme Cambridge O Level – October/	SyllabusP. Inalling2016402421	
Question	Answers	Mark	Part marks
(a)	[DT =]10.8 or 10.816 to 10.82	2	M1 for $DT^2 = 6^2 + 9^2$ oe
(b)	139 or 139.2 to 139.3	3	B1 for $BT = 10$ M1 for sum of areas of four triangles seen, with at least 3 of the following correct: $\frac{1}{2} \times 8 \times 6$, $\frac{1}{2} \times 9 \times 6$, $\frac{1}{2} \times 8 \times their DT$, $\frac{1}{2} \times 9 \times their BT$
(c)	504	2	M1 for $9 \times 8 \times 5$ or $\frac{1}{3} \times 9 \times 8 \times 6$
(d)	50.7° final answer	3	M1 for finding an acute angle in triangle <i>THG</i> . e.g. tan $[] = \frac{11}{9}$ or tan $[] = \frac{9}{11}$ A1 for 50.7[]° or 39.28 to 39.3°
(a)	283°	1	
(b)	055°	1	
(c)	[<i>AB</i> =] 15.4 or 15.36[]	3	B1 for $ABC = 74^{\circ}$ M1 for $\frac{AB}{\sin 51} = \frac{19}{\sin ABC}$
(d)	[<i>DC</i> =] 20.08 to 20.1	3	M2 for $[DC^2 =] 19^2 + 27^2 - 2 \times 19 \times 27 \times \cos 48$ or M1 for cosine formula with one error
(e)	Correct working leading to 114 minutes or 1 hour 54 minutes	4	M1 for $AX = 19 \times \cos 48$ or for $CX = 19 \times \sin 48$ M1 for $DX = 27 - their AX$ Or for $DX = \sqrt{their DC^2 - their CX^2}$ M1 for Time = $216 \times \frac{their DX}{27}$ oe

	Page 5	Mark Scheme Cambridge O Level – October/November 2016			Syllabus 4024	P. nymath	
			1				
	Question	Answers	Mark	I	Part marks		
	(a)	0.2 or 0.21[2]	1				
(b)	(b)	Correct axes	B1				
		Correct shape curve through 9 correct points	B2	B1ft for at least	7 correct po	ints plotted	
	(c)	Clear, correct, tangent drawn	M1				
		2.2 to 2.5	A1				
	(d) (i)	Ruled line from (-0.4, 0) to (2, 3.6)	1				
	(ii)	$y = 1.5x + 0.6$ or $y = \frac{3}{2}x + \frac{3}{5}$	2	B1 for $m = 1.5$ or for $c = 0$. or for correct form	oe .6 oe ct equation in	n a different	
	(iii)	0 and 3.1 to 3.2	1ft	FT intersections <i>their</i> curve	of <i>their</i> rule	d line with	
	(iv)	A = 2.4 to 2.6	1				
		B = 1	1				
	(a)	42	1				
	(b)	17	3	B2 for 0.9×1.3 or B1 for 27×182 and M1 for $\frac{their 491}{the}$	or for answe or 0.27×18 14 - their 420 eir 4200	er 117 22 00 ×100 oe	
	(c) (i)	$\frac{(30-y) \times (140+4y)}{100}$ oe isw	2	B1 for (30 – <i>y</i>)	or $(140 + 4)$	/) soi	
	(ii)	Forms equation $\frac{(30-y) \times (140+4y)}{100} = 40$ then correct working leading to $y^2 + 5y - 50 = 0$ AG	2	B1 FT for 4200 4000 or better FT equating <i>the</i> 40, eliminating to brackets	- 140y + 12 <i>ir</i> product fro fraction and	$0y - 4y^2 =$ om (ii) with expanding	
	(iii)	y = -10, 5	3	B2 for $(y + 10)$ or B1 for $(y + a)$ when OR B1 for $\sqrt{225}$ so and B1 for $\frac{-5 \pm 1}{2}$	$y(y-5)$ $a)(y+b)$ $ab = -50 \text{ or}$ $\frac{1}{2}\sqrt{their 225}}{2}$	or $a + b = 5$	

Mark Scheme Cambridge O Level – October/November 2016

Page 6 Mark Scheme Cambridge O Level – October/Nov			Syllabus P. Unated Syllabus P. U		
Question	Answers	Mark	Part marks		
(iv)	160 cao	1			
0 (a) (i)	Correct histogram with linear scale on frequency density axis	3	 B2 for all 5 heights correct with axis scaled OR B1 for at least 3 correct frequency densities soi and B1 for all 5 bars correct widths 		
(ii)	39.4[4]	3	B1 for use of correct midpoints M1 for $\frac{\Sigma fx}{135}$		
(b) (i)	$\frac{33}{95}$ oe	1			
(ii)	$\frac{48}{95} \text{ oe}$	2	M1 for $\frac{3}{5} \times \frac{8}{19} + \frac{2}{5} \times \frac{12}{19}$ Or SC1 for answer $\frac{24}{95}$		
(iii)	12 cao	1			
(iv)	$\frac{91}{190}$ oe	2	M1 for $\frac{k}{n} \times \frac{k-1}{n-1}$ where $n > k > 1$		
1 (a) (i)	13	2	M1 for $\sqrt{(-5)^2 + 12^2}$		
(ii) ((a) $[\overrightarrow{BD} =]\overrightarrow{BA} + \overrightarrow{AD} = \begin{pmatrix} 6\\-11 \end{pmatrix} + \begin{pmatrix} 0\\k \end{pmatrix} = \begin{pmatrix} 6\\k-1 \end{pmatrix}$	11) 1 AG	Or $[\overrightarrow{BD} =]\overrightarrow{AD} - \overrightarrow{AB} = \begin{pmatrix} 0\\ k \end{pmatrix} - \begin{pmatrix} -6\\ 11 \end{pmatrix} = \begin{pmatrix} 6\\ k-11 \end{pmatrix}$		
((b) 8.5	2	M1 for using $2 \times \begin{pmatrix} 6 \\ k - 11 \end{pmatrix} = \begin{pmatrix} 12 \\ -5 \end{pmatrix}$		
((c) 4.5	1	or FT their (i) – their k		
(b) (i)	Reflection	1			
	x = 0 or y-axis	1			

				WWW. M. M.
Page 7		Mark Schei	me	Syllabus PL The State
		Cambridge O Level – Octob	per/November	2016 4024 21 Mg S
Question	1	Answers	Mark	Part marks
(ii)	(a)	(3 ¹ / ₂ , 1), (7, 2), (8, 2)	2	B1 for 1 or 2 correct pairs of coordinates
	(b)	$\begin{pmatrix} -1 & 3 \\ 0 & 1 \end{pmatrix}$	2	B1 for $\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$ used
				or M1 for $\begin{pmatrix} a & b \\ c & d \end{pmatrix} \times \begin{pmatrix} -\frac{1}{2} & -1 & -2 \\ 1 & 2 & 2 \end{pmatrix} = \begin{pmatrix} 3\frac{1}{2} & 7 & 8 \\ 1 & 2 & 2 \end{pmatrix}$