www.mymathscloud.com

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS GCE Ordinary Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

4024 MATHEMATICS (SYLLABUS D)

4024/22 Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	w.D.	M. Mains
Syllabus	Pap	Sales
4024	22	The state of the s
		30/0/
		40,C0
		OW

Abbreviations

Page 2

cao correct answer only cso correct solution only

dep dependent

ft follow through after error isw ignore subsequent working

oe or equivalent SC Special Case

www without wrong working

soi seen or implied

Qu	Answers	Mark	Part Marks
1	(a) $(m=)\frac{A-h^2}{4h}$ final ans	3	M1 for $A = 4hm + h^2$ or $\frac{A}{h} = 4m + h$ and (indep.) M1 for $4hm = A - h^2$ or $4m = \frac{A}{h} - h$ or for isolating the term in m after the first M0.
	(b) $(x-2y)(3a+5b)$	2	M1 for $x(3a + 5b) - 2y(3a + 5b)$ or $3a(x - 2y) + 5b(x - 2y)$ or for correct extraction of one common factor at any stage.
	(c) 2 or – 1.6	3	C2 for one correct www or M2 for $5x - 1 = \pm 9$ or $5(5x + 8)(x - 2) = 0$ oe or M1 for $(5x - 1)^2 = 81$ soi or for $5x - 1 = 9$
2	(a) 43(.0)	2	M1 for $\sin x = \frac{3.73}{5.47}$ (0.6819) oe
	(b) (±) 2.5(0)	4	M2 for $5.32^2 + 3.73^2 - 2 \times 5.32 \times 3.73 \times \cos 25$ or M1 for $\cos 25 = \frac{3.73^2 + 5.32^2 - x^2}{2 \times 3.73 \times 5.32}$ or for $5.32^2 + 3.73^2 + 2 \times 5.32 \times 3.73 \times \cos 25$ A1 for 6.246 seen or 8.84
	(c) (i) 245	1	
	(ii) 16.7	2	B1 for tany = $\frac{30}{100}$ or $\frac{100}{30}$ (y = 73.3)
3	(a) (i) One line of symmetry	1	
	(ii) 10:1	3	B1 for π (r or R) ² and a further B1 for a valid attempt at an expression or equation involving R and r

Mark Scheme: Teachers' version

GCE O LEVEL - October/November 2011

				wh. D. A	
Mark Scheme: Teachers' version Syllabus Par					
GCE O LEVEL - October/I	er 2011	4024	22	00	
					%
icing explanation	2	B1 for AOB	8 = 72 soi or		AQ,CC
		B1 for $ACB = 108$ and conclusion involving			O/D
		360			

	(b) (i) Convincing explanation	2	B1 for $AOB = 72$ soi or B1 for $ACB = 108$ and conclusion involving 360
	(ii) 7(πr)	2	M1 for $(5 \times) \frac{252}{360} \times 2\pi r$
4	(a) (i) (a) 20	1	
	(b) 25	2	M1 for figs $\frac{60 \times their12 - 540}{60 \times their12}$ oe
	(ii) 6.25	2	B1 for ÷ by figs 16
	(b) (i) $63 \times 6 + 4x \le 500$ or $63 + x \le 100$ oe isw	1	
	(ii) 93	2	M1 for $63 \times 6 + 4x$ (<) 500 or better seen SC1 for answer 30.
	(c) (i) 435	1	
	(ii) 7.2(0)	2	M1 for ÷ by figs 145
5	(a) $x = 5$ $y = 4$	2	B1 for one correct www or M1 for $\begin{pmatrix} 3x-11\\ x+y \end{pmatrix}$ soi
	(b) (i) (a) (a, c)	1	
	(b) (b, d)	1	
	(ii) $\begin{pmatrix} 1 & -3 \\ 3 & -2 \end{pmatrix}$	1	
	(iii) Reflection in x-axis	2	B1 for Reflection only.
6	(a) $\begin{pmatrix} 6 \\ 2 \end{pmatrix}$	1	
	(b) $\frac{1}{3}$ oe isw	1	
	(c) $P = -3$ $Q = 21$	2	M1 for $7P + Q = 0$ or $9P + Q = -6$ or B1 for an equation with $m =$ their (b) or $c = 7$
	(d) (i) (18, -5)	1	
	(ii) (±) 13	1	

Page 3

			23, 3
Page 4	Mark Scheme: Teachers' version	Syllabus	Pap Though
	GCE O LEVEL – October/November 2011	4024	22 8/1/20 1/3

	(iii) (a) (12, 11)	2	B1 for $(x =) 12$
	(b) $2\overrightarrow{AB}$	1	
7	(a) (i) 27.7	2	M1 for $\frac{1}{2} \times 8 \times 8 \times \sin(\text{their}60)$ oe
	(ii) Convincing explanation	1	
	(iii) 4.62	2	M1 for $\frac{AF}{\sin 30} = \frac{8}{\sin 120}$ oe such as
			$\frac{4}{AF} = \cos 30$
	(b) (i) 111	1ft	Accept 4 × their (a)(i) ft
	(ii) 60.3	3ft	M1 for $(VF^2 =) 8^2 - (\text{their (a)(iii)})^2$ A1 for $(VF =) 6.53$ or ft soi
			SC1 for $\frac{1}{3}$ × their (a)(i) × their VF
	(c) (i) 2 ± 0.01	2	M1 for ³ √ of ratio of their volumes soi
	(ii) 8	1	
8	(a) (i) 1240	1	
	(ii) 11 correct plots (and smooth curve)	2	P1 for 7 correct plots (joined.)
	(iii) (4.6)	1ft	ft from their graph at $y = 42$
	(b) (i) 1100	1	
	(ii) Correct line, ruled	2	L1 for freehand line or line with intercept 25 or gradient 3.75
	(c) (4.8)	1ft	
	(d) (i) $6 \le \text{gradient} \le 7 \text{ (\$/yr)}$	2	M1 for correct tangent
	(ii) 3.75 (\$/yr)	1	
	(iii) (2)	1ft	
9	(a) Complete congruency case www	3	R1 for $A = B$ (= 90) S1 for $AP = BQ$ or $AB = BC$ stated
	(b) Convincing explanation www	2	C1 for stating $ABP = BCQ$
	(c) (i) Angle in a semicircle	1	
	(ii) B 2	1	

			73. 12
Page 5	Mark Scheme: Teachers' version	Syllabus	Pap The Tage
	GCE O LEVEL – October/November 2011	4024	22 8/1/20 95

	(iii)	(a) 6	1	
		(b) Convincing explanation www	1	
		(c) 12	1	
		(d) 45	2	B1 for $\frac{1}{2} \times 6 \times$ their (c) or $\frac{1}{2} \times 6 \times 3$ seen
10	(a) (i)	3x seen	1	
	(ii)	7 - 2x oe seen	2	M1 for $[28 - 2(x + \text{their} 3x)] \div 4$
	(b) (i)	$x^2 - 28x + 49 = 0$	2	AG so www M1 for $3x^2 = (7 - 2x)^2$
	(ii)	1.88 26.1	4	B3 One correct or both 1.875 and 26.12 seen or both 1.9 and 26.1 or better seen
				or B1 for $p = 28$ and $r = 2$ and B1 for $q = 588$ or $\sqrt{q} = 24.248$
				B1 for $(x-14)^{(2)}$ and B1 for 147 or 12.12
	(iii)	1.88 with convincing reason (Accept the accuracy marked in (ii))	2	B1 for 1.88 (or the accuracy marked in (ii))
	(iv)	10.6 or 10.5 cao	1	
11	(a) (i)	7 correct plots and smooth curve	3	P2 for 7 correct plots or P1 for 4 correct plots SC1 for ogive curve SC1 for all heights correct
	(ii)	(43)	1ft	ft's dependent on ogive curve
	(iii)	(18)	1ft	
	(iv)	(26)	1ft	

					2.74
Page 6 Mark Scheme: Teachers' version			ion	Syllabus	Pap
	GCE O LEVEL – October/November 2011			4024	22
3CHOLLO					
(b) (i) C	Completion of diagram	2	B1 for two	correct probabiliti	ies

(b) (i) Completion of diagram	2	B1 for two correct probabilities
(ii) (a) $\frac{1}{11}$	1	
(b)	2	B1 for two of the following products correct $\frac{8}{12} \times \frac{7}{11} + \frac{8}{12} \times \frac{4}{11} + \frac{4}{12} \times \frac{8}{11}$
(iii) $\frac{k}{55k}$ isw	1	