

MARK SCHEME for the October/November 2009 question paper

for the guidance of teachers

4024 MATHEMATICS

4024/01

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2009 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

UNIVERSITY of CAMBRIDGE International Examinations

			www.m.
Page 2	Mark Scheme: Teachers' version	Syllabus	Papy
	GCE O LEVEL – October/November 2009	4024	01

							·	
	Pag	e 2	Mark Scheme: Teac GCE O LEVEL – Octobe			Syllabus 4024	Pap nath	
L						-102-1		
1	(a)	$\frac{2}{21}$		1	Accept 0.095(238) , 9.5() x 1	или, пупаца Рар. 01 10 ⁻²	
	(b)	$\frac{5}{6}$ cao		1				
2	(a)	A pair o	of brackets around 7 – 5	1	Condone extra pairs of brackets (but not a single full bracket) provided result is correct.			
	(b)	0.054 o	r equiv	1	e.g. $\frac{27}{500}$, 5.4 x	10 ⁻² , 00.054(0)		
3		Accept 0.39, 0.	, $\frac{9}{20}$, 46% correct equivalent values, e.g. 4, 0.45, 46%	2	covered up, e.g (cover up $\frac{9}{20}$ o	the correct order w g. 0.39, $\frac{9}{20}$, $\frac{2}{5}$, 46	%	
4	(a)	98, 2 ×	$7^2, 2 \times 7 \times 7$	1				
	(b)	28		1	Accept $2^2 \times 7$ f	for 28.		
5	(a)	08 45, 8	3 45 (a.m.)	1				
	(b)	775		1				
6		12.5, 12	$2\frac{1}{2}, \frac{25}{2}$	2	B1 by implicat or B1 for corre	ect evaluation of the $\frac{k}{x}$, $\frac{1}{1000}$ from y < 4 for 1000	eir constant;	
7	(a)	China		1				
	(b)	1.125 ×	10 ⁸ , 1.13 × 10 ⁸	2	or C1 for $A \times 1$ where 1.01< A	< 1.14 and $A \neq 1$. lues give B1 if 1.1		

	Pag	03	Mark Scheme: Teache	are' va	rsion	Syllabus	Painth
	Гау		GCE O LEVEL – October/N		4024		
					 T		
8	(a)	60 cao		1			MNN, MYMAR Pap 01
	(b)	13 or their (a) – 47 provided their (a) > 47			or for Silver = $\frac{360}{100}$ or M1 for $\frac{360}{100}$	e seen anywhere 20 soi, or for Othe -(72+120+90) 360 for (b) may appea ne diagram.	er = 15 soi. \times their (a) .
)	(a)	800,8>	$\times 10^2$	1			
	(b)	(<i>m</i> =)	$\frac{Ft}{v-u} , Ft/(v-u)$	2	Accept equiv. If or C1 for Ft/v - or B1 for $Ft =$		$\frac{t}{v}$
0	(a)	(-) 4.83		1			
	(b)	(i) 10 (ii) (-	0 06 (h) or 10.06 –) 0.59	1 1	Accept 10 h 6 ((m), 10 6 a.m., 6 r	nins past 10;
1	(a)	1		1			
	(b)	2.9, $2\frac{9}{10}$	·, ²⁹ / ₁₀	2	of pets) × frequ	npting to find the p nencies (condone a pting to add these p ng 58.	missing 0×2)
12	(a)	-5 cao		1			
	(b)		, 2.33 or better	2	or B1 for $p = 4$ e.g., $3p = 7$ or	p - 7 oe, soi by -3p = -7 or $p =$	$=\frac{-7}{-3}$
13	(a)	$\frac{13m}{20}, 0.$.65 <i>m</i>	1			
	(b)	(<i>x</i>) > 10		2	or B1 for $2x > 2$	the formula of the f	seen

				Mark Scheme: Teachers' version		Syllabus	Papyna
			GCE O LEVEL – October/N	Noven	1ber 2009	4024	01 9
14	(a)	(0, 7.5	i) oe	1			Mun Man Pap Main 01
	(b)	(i)	-1.5 oe	1	e.g. $\frac{6}{-4}$		
		(ii)	(1, 7) cao	1			
15	(a)	$\begin{pmatrix} 1\\ 10 \end{pmatrix}$		1			
	(b)	(i)	(±) 5 cao	1			
		(ii)	2 cao	1			
16	(a)	(i)	24.9 to 26.1 inclusive	1			
		(ii)	111° to 115° inclusive	1			
	(b)		tked 6.5 cm from F and 5 cm from G within 2 mm) and above FG .	1			
17	(a)	6		1			
	(b)	Recta	ngle, base 3 to 3.5, height 16	1	Allow all meas	surements to withi	n 1 mm.
		Recta	ngle, base 3.5 to 4.5, height 4	1			
18	(a)	(0)699		1			
	(b)	(i)	1:3 oe (numerical)	1			
		(ii)	9:8 oe (numerical)	2	or $\sqrt{\mathbf{B1}}$ for so	quaring their (b)(i)).
9	(a)	(i)	7 <i>a</i> (3 <i>a</i> -2)	1			
		(ii)	(x-8)(x+5)	1			
	(b)	$-4\frac{1}{2}$	or any equiv.	2	or C1 for $4\frac{1}{2}$ or B1 for $k = 3$ of the quadrati $2y^2 + ky - 27 = 3$	3, or for seeing (<i>y</i> c, e.g.	- 3) as a factor

	Page 5		Mark Scheme: Tea			Syllabus	Papyman
			GCE O LEVEL – Octob	per/Noven	nder 2009	4024	01
0	(a)	(0)35	o	2	space is blank	n for relevant work ng $\angle AOE = 70^{\circ}$.	Pap nan 01
	(b)	(i)	(0)55°	1			
		(ii)	125° or f.t. 180 – their (b)(i)	1 √			
1	(a)	$\frac{5}{7}$,	$\frac{2}{7}$ correctly placed	1			
	(b)	(i)	$\frac{5}{14}$	1	In (b), accept 1 mark penalt	equivalent fraction y, once.	is but deduct a
2		(ii)	25 28	2	e.g. $\frac{5}{8} \times \frac{4}{7} + \frac{5}{8} \times \frac{3}{7}$ or $\frac{5}{8} + \frac{3}{8} \times (the)$ $\{\frac{5}{8} \times \frac{4}{7} \text{ may a}$ or $1 - \frac{3}{8} \times (the)$ are between 0	$\frac{2ir\frac{5}{7}}{ppear as} \frac{5}{14} \text{ or } the}{\frac{2}{7}}, \text{ provided } the}$	eir (b)(i) }
	(a)	36, 1		2	or C1 for two	correct	
	(b)	(i)	n^2 oe	1			
		(ii)	2n - 1 oe	1			
6	(a)	(i)	102.5(0)	1			
		(ii)	70	2	or M1 for $\frac{fig}{fig}$		
					or M1 for 100	$0 - \frac{7.3}{25} \times 100$	
	(b)	20		2	or M1 for $\frac{12}{0.6}$	oe, e.g. $\frac{k \times 100}{5k}$	

							min m	
	Page 6		Mark Scheme: Teache			Syllabus	Papyna	384
			GCE O LEVEL – October/	Noven	nber 2009	4024	01 M	rs.
24	(a)	(2, 5.5)		3	or B2 for $x = 2$	uiv. for 2 and for 3 or for $y = 5.5$ see tempt that leads to unknown.	n in wkg	NUCCOM
	(b)	y > -2 x + 4y < 0	0e < 24 oe	1 1	e.g. $y + 2 > 0$			
25	(a)	(i) ((ii) 3	$\begin{pmatrix} -8\\2 \end{pmatrix}$	1 1				
	(b)	i	Reflection y = -x oe -1, 1)	1 2	or B1 for reflec	tion of A in $x = -$	1	