

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

CENTRE NUMBER	CANDIDATE NUMBER
MATHEMATICS (SYLLABUS D) Paper 1	4024/01 October/November 2007
Candidates answer on the Question Paper	2 hours

Additional Materials: Geometrical instruments

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in. Write in dark blue or black pen. You may use a pencil for any diagrams or graphs. Do not use staples, paper clips, highlighters, glue or correction fluid. DO **NOT** WRITE IN ANY BARCODES.

Answer **all** questions.

If working is needed for any question it must be shown in the space below that question. Omission of essential working will result in loss of marks.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

NEITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.

At the end of the examination, fasten all your work securely together.

For Examiner's Use

This document consists of **16** printed pages.

[Turn over

www.mymathscloud.com

		2
	NEI	ITHER ELECTRONIC CALCULATORS NOR MATHEMATICAL TABLES MAY BE USED IN THIS PAPER.
1	(a)	Express $22\frac{1}{2}$ % as a fraction in its lowest terms.
	(b)	Evaluate 0.9×0.02 .
		Answer (a)[1]
		(<i>b</i>)[1]
2	Exp	press as a single fraction in its lowest terms
	(a)	$3\frac{5}{9} - 2\frac{2}{3}$,
	(b)	$\frac{3}{8} \div 2\frac{1}{4}.$
		Answer (a)[1]
		Answer (a)[1] (b)[1]
3	(a)	Answer (a)[1] (b)[1] Add 620 grams to 3.7 kilograms. Give your answer in kilograms.
3	(a)	Answer (a)[1] (b)[1] Add 620 grams to 3.7 kilograms. Give your answer in kilograms.
3	(a)	Answer (a)
3	(a) (b)	Answer (a)[1] (b)[1] Add 620 grams to 3.7 kilograms. Give your answer in kilograms. Manswer (a)kg [1] Write the following numbers in order of size, starting with the smallest.
3	(a) (b)	Answer (a)
3	(a) (b)	Answer (a)[1] (b)[1] Add 620 grams to 3.7 kilograms. Give your answer in kilograms. $Answer (a) \dots kg [1]$ Write the following numbers in order of size, starting with the smallest. 3 ¹ 3 ⁻¹ (-1) ³ 3 ⁰

1	www.mya	324
4	3 In the diagram, the circle, centre <i>O</i> , passes through <i>A</i> , <i>B</i> and <i>C</i> . <i>AC</i> is a diameter of the circle and the line <i>TAS</i> is the tangent at <i>A</i> . $\angle ACB = 34^\circ$, <i>TA</i> = 3 cm and <i>TC</i> = 5 cm. (a) Find $\angle BAC$. (b) Calculate the radius of the circle. T = 3 = A = S	inscloud
	Answer (a) $\angle BAC =$	
5	 (a) The rate of exchange between dollars and euros was \$0.8 to 1 euro. Calculate the number of euros received in exchange for \$300. (b) Find the simple interest on \$450 for 18 months at 4% per year. 	
	Answer (a)[1] (b) \$[1]	
6	It is given that $f(x) = \frac{3-x}{2}$. Find (a) $f(-9)$, (b) $f^{-1}(x)$.	
	Answer (a)[1]	

www.mymainscloud.com

For Examiner's Use

7

In an experiment, the heights of some plants were measured. The table below summarises the results.

Height (<i>h</i> cm)	$2 < h \leq 3$	$3 < h \le 4$	$4 < h \le 5$	$5 < h \le 8$
Frequency	15	25	20	15

Complete the histogram which represents this information.

Answer

		6				W.W.M.				
11	The mass of a marble is given as 5.4 grams, correct to the nearest tenth of a gram. The mass of a box is given as 85 grams, correct to the nearest 5 grams.									
	(a)	Complete the table in the answer space.								
	(b)	Find the lower bound for the total mass of the	he box and 20	identical ma	rbles.					
		Ans	wer (a)			_				
				Lower bound	Upper bound					
			Mass of 1 marble	g	g					
			Mass of the box	g	g					
						[2]				
			(<i>b</i>)		g	[1]				
12	(a)	When an object is falling, the air resistance At a certain speed, the resistance is 30 newt What is the resistance at twice this speed?	(b) varies as the se ons.	quare of the s	speed.	[1]				
12	(a) (b)	When an object is falling, the air resistance At a certain speed, the resistance is 30 newt What is the resistance at twice this speed? y is inversely proportional to x . Given that $y = 6$ when $x = 4$, find the value of	(b) varies as the second one. of y when $x = 3$	quare of the s	speed.	[1]				
12	(a) (b)	When an object is falling, the air resistance At a certain speed, the resistance is 30 newt What is the resistance at twice this speed? y is inversely proportional to x . Given that $y = 6$ when $x = 4$, find the value of	(b) varies as the second ons. of y when $x = 3$	quare of the s	speed.	[1]				
12	(a) (b)	When an object is falling, the air resistance At a certain speed, the resistance is 30 newt What is the resistance at twice this speed? y is inversely proportional to x . Given that $y = 6$ when $x = 4$, find the value of	(b) varies as the second ons. of y when $x = 3$	quare of the s	speed.	[1]				
12	(a) (b)	When an object is falling, the air resistance At a certain speed, the resistance is 30 newt What is the resistance at twice this speed? y is inversely proportional to x . Given that $y = 6$ when $x = 4$, find the value of	(b) varies as the second ons. of y when $x = 3$	quare of the s	g	[1]				
12	(a) (b)	When an object is falling, the air resistance At a certain speed, the resistance is 30 newt What is the resistance at twice this speed? y is inversely proportional to x . Given that $y = 6$ when $x = 4$, find the value of	(b)	quare of the s	speed.	[1]				
12	(a) (b)	When an object is falling, the air resistance At a certain speed, the resistance is 30 newt What is the resistance at twice this speed? y is inversely proportional to x. Given that $y = 6$ when $x = 4$, find the value	(b)	quare of the s	speed.	[1]				
12	(a) (b)	When an object is falling, the air resistance At a certain speed, the resistance is 30 newt What is the resistance at twice this speed? y is inversely proportional to x . Given that $y = 6$ when $x = 4$, find the value of	(b)	quare of the s	speed.	[1]				
12	(a) (b)	When an object is falling, the air resistance At a certain speed, the resistance is 30 newt What is the resistance at twice this speed? y is inversely proportional to x . Given that $y = 6$ when $x = 4$, find the value of	(b)	quare of the s	speed.	[1]				
12	(a) (b)	When an object is falling, the air resistance At a certain speed, the resistance is 30 newt What is the resistance at twice this speed? y is inversely proportional to x . Given that $y = 6$ when $x = 4$, find the value of	(b)	quare of the s	speed.	[1]				
12	(a) (b)	When an object is falling, the air resistance At a certain speed, the resistance is 30 newt What is the resistance at twice this speed? y is inversely proportional to x. Given that $y = 6$ when $x = 4$, find the value of	(b)	quare of the s	speed.	[1]				
12	(a) (b)	When an object is falling, the air resistance A a certain speed, the resistance is 30 newt what is the resistance at twice this speed? <i>y</i> is inversely proportional to <i>x</i> . Given that $y = 6$ when $x = 4$, find the value of A and A	(b)	quare of the s	speed.	[1]				
12	(a) (b)	When an object is falling, the air resistance At a certain speed, the resistance is 30 newt What is the resistance at twice this speed? y is inversely proportional to x . Given that $y = 6$ when $x = 4$, find the value of $x = 4$.	(b)	quare of the s	speed.	[1]				

For Examiner's Use

15

www.mymathscloud.com

A farmer wishes to build a rectangular enclosure against a straight wall. He has 39 identical fence panels, each 1 metre long. One possible arrangement, which encloses an area of 70 m^2 , is shown in the diagram and recorded in the table below.

Find the length of the enclosure which would contain the largest area. Write down this length and the largest area.

Record all your trials in the table.

Marks will be awarded for clear, appropriate working.

Width (m)	2		
Length (m)	35		
Area (m ²)	70		

Answer Length =m

Area = m^2 [3]

For miner's Use 19	(a)	11 Estimate the value, correct to one significant figure, of $\frac{4.03^2 \times 29.88}{\sqrt{150}}$.	ANN ANSUS
	(b)	Answer (a)[2] Sam ran 100 metres in 12 seconds. Calculate his average speed in kilometres per hour.	
		Answer (b) km/h [2]	
20	Fac (a) (b) (c)	torise completely $15a^2 + 12a^3$, $1 - 16b^2$, 6cx - 3cy - 2dx + dy.	
		Answer (a)[1] (b)[1] (c)[2]	

23

The foot of a mountain is at sea level. The temperature at the foot of the mountain was 16° C. The temperature at a height of 3000 m on the mountain was -4° C.

- (a) Find the difference between these temperatures.
- (b) Given that the temperature fell at a constant rate, find
 - (i) the temperature at a height of 1800 m,
 - (ii) the height at which the temperature was 0° C,
 - (iii) an expression, in terms of x, for the temperature, in $^{\circ}$ C, at a height of x metres.

- Answer (a)°C [1] (b)(i)°C [1] (ii) m [1]
 - (iii)[2]

4024/01/O/N/07

or iner's ise	24 A series of di	agrams, usin are grev wh	g three type	15 s of triangle,	is shown be	low.	12	WW. MY Mathscic
	Dia	igram 1 D	iagram 2	Diagram	3 f triangle up	Diagram 4		
	Diagram	ow snows th	2	ach type c	4	ed in the dia	grams.	
	Grey triangles	2	4	6	•		x	4

(a) Complete the column for Diagram 4.

1

0

4

2

White triangles

Black triangles

(b) By considering the number patterns in the table, find, in terms of *n*, expressions for *x*, *y* and *z*.

9

6

Answer (b) $x = \dots$ *y* = *z* =[4]

y

Z.

[1]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.
© UCLES 2007 4024/01/O/N/07