

MARK SCHEME for the October/November 2006 question paper

4024 MATHEMATICS

4024/02

Paper 2, maximum raw mark 100

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

The grade thresholds for various grades are published in the report on the examination for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses.

CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2006 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Pa	ge 2		Mark Scheme		Sylla	abu	s		F Jy
	90 -	GCE O	LEVEL - OCT/NO	/ 2006		24	•		02
(a) (i)	5(x+2)(x-2)	seen			B2	2	2		in myma F. 02
	After B0, allow	B1 for partial facto	prisation, e.g. $5(x^2 - 4)$	or $(5x + 10)(x - 2)$					
			or $(x + 2)(x - 2)(x -$	- 2) seen etc					
(ii)	Final answer2($\frac{x-2}{(x-1)}$ oe including	$\frac{x-2}{2x-2}$ asc $\frac{x-2}{2x-2}$		B2	2	2		
	After B0, allow	B1 for <u>Their (a)</u> 10(x-1)(x)	(i) soi or $5x - 10$ + 2) $10x - 10$	be nww					
		or quad	ratic factors of denomi	nator including $(x-1)$	(x+2)				
(b)	$\frac{4(y+5)-3(y-1)}{(y-3)(y+5)}$	<u>-3)</u> oe soi			М	1			
		in this form, inner l rm, accept quadration	brackets essential c expression with y^2 and	d -15					
	Final answer	$\frac{y+29}{(y-3)(y+5)}$ oe			A2	3	2		
		· · · ·	t simplified numerator	and denominator seen	•				
(c)	Final answer	$(g=) \frac{4\pi^2 L}{T^2} \text{ oe}$	CAD		B3				
	Correct final an	swer involving an	expression divided by	fraction	SCB2				
	or, in either or	der, Square their equ	uation ft		MI				
	and Clears frac	ction, $(gT^2 = 4\pi^2 L)$	n	indep	MI	3	3	10	
(a) (i)	Final answer ((9, 6) or x = 9, y	= 6		B1	1	1		-
(ii)	$\frac{3}{4}$ or $\frac{6}{8}$ or (0).75			B1	1	1		
(iiii)	(±) 10				BI	1	ī		
(b) (i)		(-12, 2) or $x = -12$		ackets missing	B2	2	2		
	After B0, allow	v B1 for $\begin{pmatrix} -8\\5 \end{pmatrix} + \begin{pmatrix} \\ \end{pmatrix}$	$\begin{pmatrix} -4 \\ -3 \end{pmatrix}$ oe or $\begin{pmatrix} -12 \\ 2 \end{pmatrix}$						
	Trapezium				p Bl				

Page 3	Mark Scheme	Syllabus	F. Jn					
	GCE O LEVEL - OCT/NOV 2006	4024	02 3175					
			MMW. MAN F. MARINSC					
(a) $91^2 = 53$	$+ 64^2 \pm 2 \times 53 \times 64 \cos{(P)}$ oe soi	M1						
(cos P =	$\frac{53^2 + 64^2 - 91^2}{2 \times 53 \times 64} \text{oe soi} (= -1376) \ (= -0.2028) \\ 6784$	MI						
(P=) 10	1.65° to 101.75°	A1 3	2					
If only o	If only one or both of other angles alone found,							
allow M	allow M1 for $53^2 = 64^2 + 91^2 \pm 2 \times 64 \times 91 \cos(Q)$ or $64^2 = 53^2 + 91^2 \pm 2 \times 53 \times 91 \cos(R)$							
and A1	or (Q=)34.75° to 34.85° or (R=) 43.45° to 43.55°							
Long me	thods : Allow M2 A1							
(b) sin S =	<u>53 sin 68</u> (= 0.66406) 74	MI						
S = 41.5	5° to 41.65°	A1						
P = 70.3	5 to 70.45° or 112 – their S ft (dep on M1)	A1 3	2					
Long me	thods : Allow M2 A1							
(c) ¹ / ₂ × 53 :	74 sin (their P)	MI						
1845 to	1855 (m ²) cao	A1 2	28					

4 (a)	(XBY =) 150°				BI	1	i		
(b)	XAD = XBY (= 150)				B1				
	XA = XB and $AD (= BC) = BY$				B1				
	Conclusion drawn and at least one reason shown SAS need	led if too m	any fi	acts de	p B1	3	÷		
(c)	AXD = BXY soi				BI				
	Convincingly shows $DXY = 60^{\circ} (= AXB)$ AG			dep	Bl	2	-		
(d)	States DX =XY				B 1				
	Correctly concludes triangle DXY is equilateral			dep	B1	2		8	
	or $DY = DX$ and/or XY with a reason		BI						
	triangle is equilateral	dep	B 1						
(c)(d	i) together ΔDCY congruent to ΔADX and/or ΔBXY		B1						
	DY = DX and/or XY	dep	B1						
	ΔDCY is equilateral	dep	B1						
	Angle DXY = 60°	dep	B1						
	Numerical values used for other angles cannot gain credit								

Р	age 4	Mark Scheme	Sylla	bus	S	F. J.
		GCE O LEVEL - OCT/NOV 2006	40			02
(a) (i) (\$) 825		BI	1	a.	MMN. MYNis
	i) (£) 625				1	
	ii) <u>792 × 1.44</u>		BI		1	
ţn.	1.65		MI			
	691.2 (euros)		A1	2	2	
(b) (i) (\$) 16 200		Bl	1	1	
(ii	i) (Their 16 200) × 1	.08 × 1.08 oe soi	MI			
	(\$) 18 895.68 [A	ccept 18 896, 18895.7, 18895 or 18900] ft	Al	2	2	
(ii		ii) - 15 000 (× 100) or Their 1200 + 1296 + 1399.68 15 000 15 000	MI			
	25.95 to 26.05 (%)	[Accept 26] ft	AI	2	2	
	or 125.95 to 126.0	5 (%)	SC B1			
(c)	Use of <u>12 or 100</u> 112	soi	М1			
	(\$) 41 500		Al	2	2	11
6 (a)	Allow B1 for p = - Complete square	merical $p \pm \sqrt{q}$, (not \pm p), seen or used, r 12 and r = 14 and B1 for q = 452 or \sqrt{q} = 21.2soi Allow B1 for (a + 6/7) ² or (a + 6/7) oe soi 113/49 or square roots such as 1.5185or 10.63/7	B1 + B1			
		1.5715 of square roots such as 1.516501 10.0517				

Final	answers	Allow B1 for each of 0.66 and - 2.38	nww	B2	4	2
	or allow E	31 for both 0.661. and -2.375 seen or 0.66	6 and -2.38 seen			(1)

(b)

b)					
(i) $4x + 6y = 816$ seen (leading to $2x + 3y = 408$)	BI	a,	÷		
(ii) $3x + 5y = 654$ oe seen	Bl	i	1		
(iii) $x = 78$ and $y = 84$	B3	3	3	9	
After B0, allow B2 for one correct answer found with no wrong working					
After B0, allow M1 for correct method to eliminate one variable					
After $5x + 3y = 654$ in (ii), allow SC B2 for both $x = 82$ and $y = 81.3$ or better					

Pa	age 5			Scheme		Syllab			E.J.	73. 738
		GCE	O LEVEL	- OCT/NOV 2006		4024	1		02	- This cla
7 (a)	$2\pi \times 30^2$	(= 1800π)	(=5655)	soi		MI				AM ARAIN Rathscloud
	$2\pi \times 30 \times 70$	(=4200π)	(=13194)	soi	indep	MI				
	Their 1800π +	their $4200\pi + \pi$	r × 30²	(provided all areas)	indep	MI				
	21 650 to 21 7	50 (cm ²)				AI	4	3		
	Note Use of 3	$\pi 30^2$ may be tal	ken as $2\pi 30^2$	+ $\pi 30^2$, unless contradict	ted					
	by the	addition of ext	tra π30 ² , whe	en M0, M1, M1,A0 possi	ble					
(b) (i)) ² / ₃ π × 30 ³	(= 18000π)	(= 56549)			MI				
	Their 18000n	$+\pi \times 30^2 \times 70$	(=81 000π)	(=254469) (both volume	s) indep	M1				
	254 to 255 (lit	res) cao	>			AI	3	2		
(ii)) <u>Their (b)(i)</u> 3	(= 84.8)				M1				
	1 minute 24.5s	econds to 1 min	nute 25.5 sec	onds cao		Al	2	2		
(iii)	(Length =) Fig		<u>(b)(i)</u> + 0.6) × 0.3]			MI				
	Correct conver	rsion of units (using 1000)		indep	M1				
	1.690 to 1.700	m or 169.0 to 1	170.0 cm [U	nit essential in this case]	cao	A1	3	3	12	

Page 6	Mark Scheme	Syllabus		F. M. Mar
•	GCE O LEVEL - OCT/NOV 2006	4024		02 aths
(a) (i) 21, 28		B1 1	1	WWW. My Mainschoud
(ii) ½ × 7 × (7 +	1) = 28 (= T_7) or better seen	B1 1	÷	
(iii) 5050		B1 1	į	
(iv) 25 250 or 5	× their (iii) ft	B1 1	ì	
(v) Attempts to u	se T_{500} - their (iv) (provided their (iv) < their T_{500})	MI		
100 000		A1 2	Ţ	
(b) (i) $S_6 = 56$		B1		
$\mathbf{S}_7 = 84$		B1 2	2	
After B0 + B	0, allow M1 for correct expansion of either or both expression	ons		
(ii) (7 × (7 + 1) ×	$(7+2)) \div 6 = 84$ (= S ₇) or better seen	B1 1	÷	
(iii) 1540 seen		B1 1	i	
(c) (i) $S_4 - S_3 = (1$	×4+2×3+3×2+4×1) - (1×3+2×2+3×1)			
= 4	$+3+2+1(=T_4)$ seen	B1 1	- 5	
20 - 10 =10 i	s enough to score			
(ii) $S_{n+1} - S_n = 0$	$(n + 1) + n + (n - 1) + \dots + 2 + 1 = T_{n+1}$ justified	B1 1	4	12
If algebraic n	nethods used, mark strictly, expecting at least one step seen			

Page 7		Mark S	Scheme				Syllab	ous		4	"In
		GCE O LEVEL ·	- OCT/NOV 200	6			402				02 9th
(a) √{104	4 ² - 100 ² } or 28	3.56 oe seen	[leading to 28	.6 AG	1		Bl	1	÷		My math
(b) (i) 25°							Bl	1	ī		
(ii) (FN =) 100 tan (their 25)	(= 46.63)					MI				
(FB =) Their [46.63 - (2	28.56., or 28.6)]				dep	MI				
18.00	to 18.10 (m)	[Expect at least 3	sig figs here]				AI	3	3		
Altern	ative methods : M	2 A1									
(c) (i) CN =	$\sqrt{100^2 + 60^2}$	or BC = $\{$	$104^2 + 60^2$				MI				
	116.6 soi	or = 120.	.06 soi				A1				
tan Bo	$CN = \frac{Their 28.6}{Their CN}$	or sin BCN =	Their 28.6 Their BC				MI				
13.70	° to 13.80°	cao					AI	4	3		
Alterr	ative methods : sti	ll M1 A1 M1 A1									
(ii) BD -	(Their 28.6) sin 10	(= 164 to 165)					МІ				
cos D	$BA = \frac{104}{\text{Their BD}}$	(= 0.63)				dep	М1				
50.75	° to 50.85°	cao					A1	3	2	12	
or	DN = <u>(Their 28.</u> tan 10	<u>6)</u> (= 162.198)									
and	$DA = \sqrt{\text{their 1}}$	62.198 ² - 100 ² } (=	=127.7)		MI						
	tan DBA = <u>thei</u>	<u>ir 127.7</u> 04		dep	M1						
	50.75° to 50.85	o			AI						

		GCE O LEVEL - OCT/NOV 2	2006	4024			02 aths
	Condone inaccurac	ies of up to 1 mm in plotting and drawi	ing.				Munu My Mainson
	If plots are not visi	ble, allow P marks if curve passes with	in 1 mm of correct plot.				
	Both P and dep C t	narks can be recovered following a gro	ssly wrong plot if the				
	1	the curve passes within 1 mm of the co					
	Lined or plain pape	er used : no penalty, but extend tolerand	ces to 2 mm.				
	Penalties , only to	be applied to any P or C marks earned :					
	Wrong sc	ale(s) : - 1 once					
	Interchan	ged axes : no penalty if labelled, - 1 ot	herwise				
	Non-unife	orm scale(s) : - 2 after marking as gene	rously as possible				
(a)	8(.03)			BI	1	1	
		< 1 and for $x > 6$ throughout rest of que		-			
(b)		1 ft (P1 for at least 5 of these ft	~	P2			
	Smooth curve, not	grossly thick, through all plotted point		CI	2		
		at least 5 are	correct	CI	2	-	
(c)							
20	1.35 to 1.45			BI			
	3.55 to 3.70			B1	2	2	
(d)	Drawing tangent a	t x = 4 and estimating <u>change in y</u> change in x		M1			
	1.20 to 1.40	change in x		AI	2	2	
	Accept _i	ntegerif in range for A1		AI	*		
		integer					
(e) (i)	Ruled straight line	within 1 mm of both (1, 3.5) and (5, 5	5.5)	1.2	2	2	
		for a good freehand line through these		- 14.5			
		would pass within 1 mm of the points	V. Barris and States and Sta				
		t is long enough and passes within 2 m					
(ii)							
	1.45 to 1.55 and	4.55 to 4.65		XI	1	1	
(110)	2r ³ - 5r ² - 30r	+ 50 (=0) or any equivalent equ	ation	El	1	ľ	12
		a = -5, $b = -30$ and $c = 50$			0.		