www.mymathscloud.com

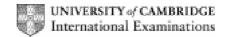
UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE O Level

MARK SCHEME for the November 2005 question paper

4024 MATHEMATICS

4024/02 Paper 2 maximum raw mark 100


This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which Examiners were initially instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began. Any substantial changes to the mark scheme that arose from these discussions will be recorded in the published *Report on the Examination*.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the *Report on the Examination*.

CIE will not enter into discussion or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the November 2005 question papers for most IGCSE and GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

			2.3, 32
Page 1	Mark Scheme	Syllabus	Pape The Section
	GCE O Level – November 2005	4024	2 9//

			-	
1	Nonsense in one part may be used to earn M marks in any other part of the of Throughout accept equivalent complete methods and decimal angles without sign, but degree sign essential if answer in degrees and minutes.	question t degree		
(a)	ABO - 90° with reason	В	1	
(b) ((leads to OAB = 27.5) AG	BI	1	
	(ii) <u>(5</u> tan 27.5	Mi		
	28.8 to 28.9 (cm)	Al	2	
- (iii) 2(their AC)sin27.5 or 2X15cos273	MZ		
	or EPC =2[90 -27.5] (=125)			
	and $\sqrt{(15^2 - 15^2 - 2y 15 x 15 \cos(\text{their } 125))}$ (M2)			1
	26.55 to 26.65 (cm)	At	3	77
2 (a)	(t =) 2 %, 2.33 or better	B2	2	┢
- (4)	After B0, allow B1 for t = 7/3 or 2.3 or 3 or for 3t = 7 seen			1
(b)	x = -2.5 or -2% and $y = 17$	B2	2	
11.7	After B0, allow B1 for one value found with no errors			
	or allow M1 for correct method to eliminate one variable	100		
	(reaching such as $4y = k$, $ky = 68$, $8x = k$ or $kx = -20$)	11:1		4
(c)	(y+2)(y-2) soi	B1	11	1
	(3y+2)(y+2) soi	Bi		
	* (* * * * * * * * * * * * * * * * * *	B)	3	
	3y + 2 obtained with no errors seen	100	-	
	y -2			
(d)		МІ		
(d)	y -2.			
(d)	y -2. Collect terms e.g. $2x + gx = 2f - 3h$	MI	3	-10

2	dil	O
	_ '(6-
		%
		A.
		7.
		n. mymath

Pag		Mark Scheme		llabus	Pap
	G	CE O Level – November 2005		1024	2
A san	F				1
	(i) (DCA =) 90" (angle in se		Br	1 1	
	(ii) (DAC=)34° or 124-16	A Company of the Comp	B1,		10
	(iii) (CBA =) 124°	(opposite angles of cyclic quad)	В)	L. I	4
	(iv) (AEB [=ADB]=) 28°	(ingles in same segment)	Bi	4	
	Lack of reason loses B1 on	first occasion only			
(h)	EBD - 28*	(alternate angles) Reason needed	Bi		10
	Deduces BDX or BDA = I	EBD			
	And hence triangle BDX is	isosceles indep	B1	2	
(s)	(ABE=) 62*		BL	1	
(d)	Convincingly shows X is th	ne centre of the circle	BI	1	
	e.g. Deduces triangle Ai	BX is isosceles, so $AX = BX = DX$			
4 (a)	After B0, allow B1 for die	representing 4, 7, 6, 5, 2, 0, 1 agram without labels ad diagram with m feast 4 values correct	B2	2	
(b) ((i) (Median =) 2√		BI/		
	ii) (Mode =) 1 /		BI		
	(iii) (Mean =) 1.92 or 48/2	5 oc	BI	3	
(E)	k . 0.2 or 20% /		BIA		
	5k		1		
(d)	k , 0.04 or 4%		B2	2	
	25k				
	After B0, allow B1 for _k	, 0.02 or 2% or _24 , 0.0384 or 3.84% u		1 - 1	
	50k	625			
(e)	Uses 2 X 6 cars or total min	nber of cars (48)	MI		
	A . 0.25 or 25%		Al	2	100
	4k				

			2.3, 32
Page 3	Mark Scheme	Syllabus	Pap. The Say
	GCE O Level – November 2005	4024	2

	1		
5 (a) (i) Lists 5 different ways	В)		- 1
e.g. on 4017 (1, 1, 1, 1), (2, 1, 1), (1, 2, 1), (1, 1, 2), (2, 2)			11
[. m. 4024, (10, 10, 10, 10), (20, 10, 10), (10, 20, 10), (10, 10, 20), (20, 20)			
(ii) Lists 8 different ways			
or justifies it is 5 ways with 10 cents first + 3 ways with 20 cents first	B)	2	
(b). (i) a = 13.	BI	. 4	11
b = 21 or 8 + their (i) 1	B2/	8	
(ii) z = x + y oc	BI	1	
5 (a) <u>24</u>	В1.	(
X.			
(b) <u>24</u> ne	BI	1	
x + 0.5			
(c) $24 - 24 = \pm 2 \int$ soi oe, but must contain x in 2 terms	MI		
x x+0.5			
Correct method to remove fractions,			
e.g. $24(x+0.5) - 24x = \pm 2x(x+0.5) \int$ oe	MI	1	
(but must have contained x in 2 different denominators)			
Obtain $2x^{2} + x - 12 = 0$ AG	AL	3	
 (d) Formula For numerical p ± √q , (not ± p) seen or used, 			
,			
Allow B1 for $p = -1$ and $\tau = 4$	181		
and B1 for $q = 97$ or $\sqrt{q} = 9.84$ soi	101		
Complete square Allow B1 for $(x + 1/4)^2$ or $(x + 1/4)$ oe soi		1 1	
and B1 for 97/16 or square roots such as 2.46 or 9.84			
4			
Final answers Allow B1 for each of 2.212 and -2.712 nww	132	4	
or allow B1 for both 2.21 and - 2.71 seen			
or allow B1 for both 2,2122, and -2,7122 seen			
(e) Turne = 24 (-10.8)	MI		
their 2,212			
10 minutes 50 to 52 seconds	Al	2	11

			.7. 2
Page 4	Mark Scheme	Syllabus	Pape
	GCE O Level – November 2005	4024	2
	•		00.

		_	
7 (a) (i) ½ x 0.6° (= 0.5655), seen	Mi		
1.520 to 1.530 (m²)	AT	2	
(ii) 2 x 2.2(2.5 +3.6) (= 26.84) oe soi	Mi		
Their 26.84 - their (i) - 1.9×0.9 (= 23.604)			
Lending to 23.fr (m²) AG	AI	2	
(b) (i) Increased area = 23.6 X 1.12 oe (=26.43 or 26.44)	MI		
Number of tiles - their 26,4 indep	MI	Ш	
0.25			
= 422 to 424	Al	4	
(ii) Number of boxes = their 423 (lending to 22.)	MI		
20			
Cost = \$330 cao	Al	2	
(iii) Division by 120 soi	м1		
20 x 15 or 100 x 15 sol	MI		
120 120			
\$ 2.5	AL	3	12

	W. M.	2
bus	Pape	6.70

			3, 2
Page 5	Mark Scheme	Syllabus	Pape
	GCE O Level – November 2005	4024	2 9/1/20 75

8	Nonsense in one part may be used to earn M marks in any other part of the qu	estion		
	Throughout accept equivalent complete methods and decimal angles without	legree		
	sign, but degree sign essential if answer is given in degrees and minutes.	1		
(a) (i	292"	BI	4	
(ii) 72 ³ + 60 ³ ± 2 × 72 × 60 cos 75 oe soi	MI		
	Correct formula simplification and a square root taken, seen or		1 1	
	implied by subsequent values dep	Mi		
	\$0.85 to \$0.95 (m)	A2:	4	
	After A0, allow A1 for 6547 or 11020 or 104.9 seen, (dep on first M1)			
(iii)	sin B = sin 75 soi	Mi		
	60 their (ii)			
	sin ABC = 60 sin 75 (= 0.7162.)	Mi		
	their (ii)			
	45.70 to 45.80°	Al	3	
(īv)	157.70 to 158 or (their (i) + their (iii) - 180)	ві	í	
(b)	(Height of kite =) 72 tan 24 (=32,05)	мі		
	$\tan \alpha = \frac{\text{their height}}{60}$ (= 0.534)	мі		
	28.05 to 28.15°	ĀE	3	12
	Some possible answers			

		hun m
Mark Scheme	Syllabus	Pap
GCE O Level – November 2005	4024	2
oe seen [feading to 13 AG]	B1 1	Pap. nairscloud.com

9 (a)	√ (50 + (2°) oc seen [leading to 13 AG]		Bi	1	
(b) (i)	π x 5 x 13 soi (=65π = 204.2)		МІ		
	2 n 5 1 noi (=50m = 157.1)	indep	MI		
	Their 65π + their 50π + $k\pi$ 5^3 where k = integer (provided all terms are areas)	indep	MI		
	361.0 to 362.0 (cm²)		AI	4	
(ii)	16 π 5° x (2 so) (-100π = 314.2)		MI		
	16π 57 soi (= 250 π /3 = 261.8)	indep	MI		
	575.5 to 576.5 (cm ¹)		ÁÍ	3	
(c)	Figs { $\pi 1.5^2 K2$ } (= fig($9\pi /2$) = fig (4.14)		Мі		
	Correct conversion, (using 1 000 000)	indep	MI		
	Fig their 14.14 their 576	indep	MI		
	24 500 to 24 600		AL	x.	12

Page 6

			.7, 2,
Page 7	Mark Scheme	Syllabus	Pape The Tage
	GCE O Level – November 2005	4024	2 9/1/10 1/3

10			
(a) (i) $EF = x - 2$		1	1
(ii) BC = 100/x		1 1	
(iii) FG = [100/s] - 5 or their (ii) - 5 ✓		1	
All three correct	B2	2	
After B0, allow B1 for any two correct √ answers			1
(b) $y = (\kappa - 2)(100 - 5)$ convincingly leading to $y = 110 - 5\kappa - 200$ AG	Bi	1	
x x			1
(a) 40(.0)	BI	i	
(d) All 7 points plotted √ (P1 for at least 5 of these √)	P2		
Smooth curve, not grossly thick, through all plotted points, of which at			
least 5 are correct	CI	3	
(e) Drawing tangent at $x = 8$ and estimating change in y , ignoring sign	ML		
change in x		1.1	
- 1.60 to - 2.00 [Ignore support from Calculus]	AL	2	
(f) (i) (4.65 to 4.80) to (8.45 to 8.55)	R2	2	
After R0, allow R1 for either value			
(ii) 6.20 to 6.40	XI	1.	12

Syllabus

12

Page 8	Mark Scheme GCE O Level – November 2005	Syllabus 4024	Pape Vinaling
11 Accept suc	basb+-a for b- a throughout.		Pap. J. Marks 2
Only expre	ssions linear in a and/or b can score.	81	
(ii) (AB =) b	- a	RC.	

B1

(iii) (DB -

(e)
$$\overrightarrow{YZ} = 3b - 3a$$
 or $\overrightarrow{ZY} = 3a - 3b$

Deduces $|XZ| = |YX| = |YZ|$.

After 0/2, allow B1 for 1 to 9, 1:9, 9,
$$\left(\frac{1}{3}\right)^2$$
 or $\left(\frac{a}{3a}\right)^2$ seen