

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Ordinary Level

ADDITIONAL MATHEMATICS

Paper 1 SPECIMEN MARK SCHEME INATIONS 4037/01 For Examination from 2013

2 hours

MAXIMUM MARK: 80

This document consists of 6 printed pages.

Mark Scheme Notes

Marks are of the following three types:

- www.mymathscloud.com Μ Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numer errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks А cannot be given unless the associated method mark is earned (or implied).
- В Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol $\sqrt{}$ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- B2 or A2 means that the candidate can earn 2 or 0. Note: B2, 1, 0 means that the candidate can earn anything from 0 to 2.

3

The following abbreviations may be used in a mark scheme or used on the scripts:

- MMM. MYMathscioud.com AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR -1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{}$ " marks. MR is not applied when the candidate misreads his own figures – this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA 1This is deducted from A or B marks in the case of premature approximation.
- S-1Occasionally used for persistent slackness – usually discussed at a meeting.
- EX 1Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

			the second
		4	Mun mannschoud co
1	(i) correct diagram	B1	nath, the
	(ii) correct diagram	B1	°Clour.
	(iii) correct diagram	B1 [3]	
2	$(2x + 1)^{2} > 8x + 9$ $4x^{2} - 4x - 8 > 0$ $x^{2} - x - 2 > 0$	M1	M1 for simplification to 3 term quadratic
	(x + 1)(x - 2) > 0 Leads to critical values $x = -1,2$ x < -1 and $x > 2$	DM1 A1 √A1 [4]	DM1 for factorisation A1 for critical values Follow through on their critical values.
3	LHS = $\frac{\sin^2 A + 1 + \cos^2 A + 2\cos A}{(1 + \cos A)\sin A}$	M1 A1	M1 for attempt to deal with fractions and attempt to obtain numerator A1 correct
	$=\frac{2+2\cos A}{(1+\cos A)\sin A}$	M1	M1 for use of $\sin^2 A + \cos^2 A = 1$
	$=\frac{2}{\sin A}$ leading to 2cos ecA	A1 [4]	
4	Substitution of $x = 1$ leading to $a + b + 4 = 0$	M1	M1 for substitution of $x = 1$ and equated to 3
	Substitution of $x = -\frac{1}{2}$ leading to	M1	M1 for substitution of $x = -\frac{1}{2}$ and equated to 6
	-a+2b-28=0	A1	A1 for both correct
	Leading to $a = -12$, $b = 8$	M1 A1 [5]	M1 for solution A1 for both
5	(i) $2t^2 - 9t - 5 = 0$ (2t + 1)(t - 5) = 0	M1 DM1	M1 for attempting to form a quadratic in <i>t</i> DM1 for attempt to solve a 3 term quadratic
	$t = \frac{1}{2}, t = 5$	A1 [3]	A1 for both
	(ii) $x^{\frac{1}{2}} = -0.5, 5$ x = 0.25, 25	M1 A1,A1 [3]	M1 for realising that $x^{0.5}$ is equivalent to <i>t</i> (or valid attempt at solution)
6	(i) $\mathbf{a} = \frac{1}{13} (5\mathbf{i} - 12\mathbf{j})$	M1, A1 [2]	M1 for a valid attempt to obtain magnitude.
	(ii) $q(5i-12j) + pi + j = 19i - 23j$ 5q + p = 19 -12q + 1 = -23 Leading to $q = 2, p = 9$	M1 M1 A1 [3]	M1 for equating like vectors M1 for solution of (simultaneous) equations A1 for both

			5	B1 for 2 (part of linear factor) B1 for -3 (part of linear factor) B1 for -6 Follow through on their <i>a</i> , <i>b</i> and <i>c</i> Allow calculus method.
7	(i) $y = 4x^2 - 12x + 3$ $y = (2x - 3)^2 - 6$	B1 B1 B1	[3]	B1 for 2 (part of linear factor) B1 for -3 (part of linear factor) B1 for -6
	(ii) $\left(\frac{3}{2}, -6\right)$	√B1, √B1	[2]	Follow through on their <i>a</i> , <i>b</i> and <i>c</i> Allow calculus method.
	(iii) f≥-6	√ B 1	[1]	Follow through on their <i>c</i>
8	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2\mathrm{e}^{-2x}(+c)$	B1		B1 for $-2e^{-2x}$
	When $\frac{dy}{dx} = 3$, $x = 0$, $\therefore c_1 = 5$ $\frac{dy}{dx} = 2 -\frac{2x}{2} + 5$	M1 A1		M1 for attempt to find c_1
	$\frac{dy}{dx} = -2e^{-2x} + 5$ $y = e^{-2x} + 5x(+c_2)$ When $x = 2, y = e^{-4}$: $c_2 = -10$ $y = e^{-2x} + 5x - 10$	B1 M1 √A1	[6]	B1 for $-2e^{-2x}$ M1 for attempt to find c_2 $\sqrt{-2}$ times their c_1
9	(i) $2^5 + {}^5C_12^4(-3x) + {}^5C_22^3(-3x)^2$ 32 - 240x + 720x ²	B1 B1 B1	[3]	B1 for 32 or 2 ⁵ B1 for -240 B1 for 720.
	(ii) $32a = 64, a = 2$ 32b - 240a = -192, b = 9 -240b + 720a = c c = -720	B1 M1 A1 M1 A1	[5]	B1 for $a = 2$ M1 for equation in <i>a</i> and <i>b</i> equated to ±192 A1 for $b = 9$ M1 for equation in <i>a</i> and <i>b</i> equated to <i>c</i> A1 for $c = -720$
10	(a) (i) $fg(x) = f\left(\frac{x}{x+2}\right)$	M1		M1 for order
	$=3-\frac{x}{x+2}$	A1	[2]	
	(ii) $3 - \frac{x}{x+2} = 10$ leading to $x = -1.75$	DM1 A1	[2]	DM1 for dealing with fractions sensibly
	(b) (i) $h(x) > 4$	B1	[1]	
	(ii) $h^{-1}(x) = e^{x-4}$ $h^{-1}(9) = e^{5} (\approx 148)$ or $4 + \ln x = 9$, leading to $x = e^{5}$	M1 A1	[2]	M1 for attempting to obtain inverse function
	(iii) correct graphs	B1 B1		B1 for each curve
		B1	[3]	B1 for idea of symmetry

© UCLES 2012

			6	Mun my my
11	(i)	$\tan^{2} 2x = 3$ $\tan 2x = (\pm)\sqrt{3}$ $2x = 60^{\circ}, 120^{\circ}, 240^{\circ}, 300^{\circ}$ $x = 30^{\circ}, 60^{\circ}, 120^{\circ}, 150^{\circ}$	M1 DM1 A1, A1 [4]	M1 for an equation in tan ² 2x M1 for attempt to solve using 2x correctly A1 for any pair M1 for correct use of identity or other valid method
	(ii)	$2\csc^{2} y + \csc y - 3 = 0$ (2cosec y + 3)(cosec y - 1) = 0 $\csc y = -\frac{3}{2}, 1$ $\sin y = -\frac{2}{3}, 1$	M1, A1 M1	M1 for correct use of identity or other valid method A1 for a correct quadratic M1 for solution of quadratic and attempt to solve correctly
		$y = 221.8^{\circ}, 318.2^{\circ}, y = 90^{\circ}$	A1, A1 [5]	A1 for 221.8°, 318.2°, A1 for 90°
	(iii)	$\cos\left(z + \frac{\pi}{2}\right) = -\frac{1}{2}$ $z + \frac{\pi}{2} = \frac{2\pi}{3}, \frac{4\pi}{3}$ $\pi, 5\pi$	M1	M1 for dealing with sec and order of operations
12		$z = \frac{\pi}{6}, \frac{5\pi}{6}$, allow 0.52, 2.62 rads	A1,A1 [3]	A1 for each
		$\frac{dy}{dx} = \frac{(x+1)2x - x^2}{(x+1)^2} = \frac{x(x+2)}{(x+1)^2}$	M1 A1	M1 for attempt to differentiate a quotient A1 correct allow unsimplified
		$\frac{dy}{dx} = 0, x = 0, -2$ $y = 0, -4$	DM1 A1,A1 [5]	DM1 for equating to zero and an attempt to solve A1 for each pair (could be $x = 0$ and $x = -2$)
	(ii)	gradient of normal = $-\frac{4}{3}$	M1	M1 for attempt to obtain gradient of the normal
		normal $y = -\frac{4}{3}x + \frac{11}{6}$, leads to	A1	A1 for a correct (unsimplified) normal equation
		M (1.375,0) N (0,-4)	√ B1 B1	Follow through on their normal B1 for N
		Area = 2.75		M1 for attempt to get area of triangle Ft on their M and N (must be on axes)