

Cambridge Assessment International Education Cambridge Ordinary Level

4037/22 October/November 2019

www.mymathscloud.com

Paper 2 MARK SCHEME Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE[™], Cambridge International A and AS Level components and some Cambridge O Level components.

Cambridge O Level – Mark Scheme PUBLISHED

Generic Marking Principles

October/ Mymathscloud.com These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question •
- the standard of response required by a candidate as exemplified by the standardisation scripts. .

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit • is given for valid answers which go beyond the scope of the syllabus and mark scheme. referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do .
- marks are not deducted for errors
- marks are not deducted for omissions •
- answers should only be judged on the quality of spelling, punctuation and grammar when these • features are specifically assessed by the question as indicated by the mark scheme. The meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the guality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

Cambridge O Level – Mark Scheme **PUBLISHED**

October/ Mun. My Mains Minaths Cloud: Com

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation '**dep**' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

answers which round to awrt correct answer only cao dep dependent follow through after error FT ignore subsequent working isw not from wrong working nfww or equivalent oe rounded or truncated rot Special Case SC seen or implied soi

October/	"h
Octobern	・ク

uestion	Answer	Marks	Guidance
1		B1	neme October/i Mum.mymai Guidance
		B1	
		B 1	
2	$\frac{\mathrm{d}y}{\mathrm{d}x} = 6\cos 3x$	B1	
	$-3\sin 3x$	B1	
	$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} = -18\sin 3x - 9\cos 3x$	B1	FT Correct derivative of <i>their</i> $\frac{dy}{dx}$
	Insert and collect like terms	M1	Must insert for <i>y</i> , <i>their</i> $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ correctly resulting in 6 terms.
	k = -15	A1	Allow $-15\sin 3x$ seen nfww
3(i)	$^{14}P_5$ or $14 \times 13 \times 12 \times 11 \times 10$	M1	
	240 240	A1	cao
3(ii)	${}^{3}P_{1} \times {}^{5}P_{2} \times {}^{6}P_{2}$ or $3 \times (5 \times 4) \times (6 \times 5)$	M1	Two of the three elements multiplied by
	= 1800	A1	
3(iii)	${}^{6}P_{2} \times {}^{8}P_{3}$ or $(6 \times 5) \times (8 \times 7 \times 6)$	M1	One element multiplied by Clear intention to multiply
	= 10080	A1	

37/22	Cambridge O Leve PUBLI		Deme Octobern WWW, Myrre Guidance Equate and attempt to simplify to all terms on one side
Question	Answer	Marks	Guidance
4	$kx + 3 = x^{2} + 5x + 12$ $\rightarrow x^{2} + (5 - k)x + 9 (= 0)$	M1	Equate and attempt to simplify to all terms on one side.
	Use discriminant of <i>their</i> quadratic.	M1	dep
	$(5-k)^2 - 36$ oe	A1	Unsimplified
	k = -1 and 11	A1	Both boundary values
	-1 < k < 11	A1	Must be in terms of <i>k</i> .
	OR		
	$2x + 5 \sim k$	M1	Connect gradients of line and curve
	$y = (2x+5)x+3 \rightarrow$	M1	Eliminate <i>k</i> and <i>y</i> .
	$2x^2 + 5x + 3 = x^2 + 5x + 12$		
	$x^2 = 9 \rightarrow x = \pm 3$	A1	
	k = 11 or k = -1	A1	
	-1 < k < 11	A1	
5(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{-2k}{\left(x+1\right)^3}$	B1	oe Unsimplified
	Gradient of normal = $\frac{(x+1)^3}{2k}$ or Gradient of tangent = -3	M1	Gradient of normal = $\frac{-1}{\text{gradient of tangent}}$
	$\frac{8}{2k} = \frac{1}{3}$ or $\frac{2k}{8} = -3$	M1	Equate gradient of normal to $\frac{1}{3}$ at
	24 5 6		x = 1 or equate gradient of tangent to -3 at $x = 1$
	<i>k</i> = 12	A1	
5(ii)	$x = 2 \rightarrow \frac{dy}{dx} = -\frac{8}{9}$ or their $\frac{-2k}{27}$	B1	FT
	$y = \frac{4}{3}$ or their $\frac{k}{9}$	B1	FT
	$\frac{y - \frac{4}{3}}{x - 2} = -\frac{8}{9} \text{ or } y = -\frac{8}{9}x + \frac{28}{9}$	B1	isw

037/22	Cambridge O Level – Mark Scheme October/i With Marks PUBLISHED October/i O			
Question	Answer	Marks	Guidance	
6(i)	$\frac{\frac{\sin x}{\cos x}}{\frac{1}{\cos x} + 1} + \frac{\frac{1}{\cos x} + 1}{\frac{\sin x}{\cos x}}$	M1	Use $\tan x = \frac{\sin x}{\cos x}$ and $\sec x = \frac{1}{\cos x}$ throughout	
	$\frac{\sin x}{1+\cos x} + \frac{1+\cos x}{\sin x}$	M1	dep Multiply by cos <i>x</i>	
	$\frac{\sin^2 x + 1 + 2\cos x + \cos^2 x}{(1 + \cos x)\sin x}$	M1	dep Add <i>their</i> fractions correctly and expand $(1 + \cos x)^2$ correctly	
	$\frac{2(1+\cos x)}{(1+\cos x)\sin x}$	M1	dep Use $\sin^2 x + \cos^2 x = 1$ and take out a factor of 2.	
	All correct AG	A1	Do not award if brackets missing at any point or x missing more than twice or x misplaced. Do not credit mixed variables.	
	OR			
	$\frac{\tan^2 x + (\sec x + 1)^2}{\tan x (\sec x + 1)}$	M1	Add fractions	
	$=\frac{2\sec^2 x + 2\sec x}{\tan x(\sec x + 1)}$	M1	dep Expand brackets correctly and use $1 + \tan^2 x = \sec^2 x$	
	$\frac{2 \sec x}{\tan x}$	M1	dep Cancel sec $x + 1$	
	$\frac{2}{\cos x} \times \frac{\cos x}{\sin x}$	M1	dep Use $\tan x = \frac{\sin x}{\cos x}$ and $\sec x = \frac{1}{\cos x}$ oe	
	All correct AG	A1	Do not award if brackets missing at any point or x missing more than twice or x misplaced. Do not credit mixed variables.	
6(ii)	$3\sin^2 x + \sin x - 2 = 0 \text{ oe}$	B1	Obtain three term quadratic.	
	$(3\sin x - 2)(\sin x + 1) = 0$	M1	Solve three term quadratic	
	41.8° awrt	A1		
	138.2° awrt	A1	Mark final answers This mark is not awarded if there are more solutions in the range.	

)37/22	Cambridge O Level PUBLIS		neme October/i WWW.mymar Guidance May be obtained later.
Question	Answer	Marks	Guidance
7(a)	$2 \times 4 \times p = 40 \rightarrow p = 5$	B1	May be obtained later.
	(x-2)(x-4)(x-p) = 0	M1	Factorise cubic
	a = -11	A1	Expand and identify
	<i>b</i> = 38	A1	
	OR		
	$2 \times 4 \times p = 40 \rightarrow p = 5$	B 1	May be obtained later.
	Obtain equations 4a + 2b = 32 16a + 4b = -24 and attempt to solve	M1	
	<i>a</i> = -11	A1	
	<i>b</i> = 38	A1	
7(b)	Find $x = -1$	M1	Trial value/s and finds a root or shows that $(x + 1)$ or $(x + 4)$ or $(x - 10)$ divides into $x^3 - 5x^2 - 46x - 40$.
	(x + 1)(x2 - 6x - 40) (= 0) or $(x + 4)(x2 - 9x - 10)(= 0)$ or $(x - 10)(x2 + 5x + 4)(= 0)$	A1	Factorise to give linear and quadratic factor
	(x+1)(x+4)(x-10) (= 0)	M1	Solve the quadratic to give 2 roots
	x = -1, -4, 10	A1	
	OR		
	Uses factor theorem to find a root $(-1)^3 - 5(-1^2) - 46(-1) - 40$ or $-1 - 5 + 46 - 40 = 0$ $\rightarrow x = -1$	M1	This may be awarded for $x = -4$ or $x = 10$.
	Uses factor theorem to attempt to find further roots	M1	At least two more trials.
	$(-4)^3 - 5(-4)^2 - 46(-4) - 40$ or - 64 - 80 + 184 - 40 = 0 $\rightarrow x = -4$	A1	
	$(10)^3 - 5(10)^2 - 46(10) - 40$ or 1000 - 500 - 460 - 40 = 0 $\rightarrow x = 10$	A1	

	Cambridge O Pl	UBLISHED	neme October/1 ⁴⁷ .myma
Question	Answer	Marks	neme October/I Munu. Munu. Munu. Munu. Guidance
8(i)	$\sqrt{5^2 + 12^2} = 13$	M1	
	$v_A = -\frac{5}{2}\mathbf{i} - 6\mathbf{j} \text{ or } \frac{1}{2}(-5\mathbf{i} - 12\mathbf{j})$	A1	
8(ii)	$ v_B = \sqrt{12^{12} + (-9)^2}$	M1	Use Pythagoras
	15	A1	Do not allow \pm 15. Mark final answer.
8(iii)	$\mathbf{r}_{A} = \begin{pmatrix} 20\\ -7 \end{pmatrix} + t \begin{pmatrix} -2.5\\ -6 \end{pmatrix}$ or $\mathbf{r}_{A} = (20 - 2.5t)\mathbf{i} + (-7 - 6t)\mathbf{j}$	B1	FT on <i>their</i> v_A only if of the form $k(-5\mathbf{i} - 12\mathbf{j})$ where $k \neq 1$ or 0.
or	$\mathbf{r}_{B} = \begin{pmatrix} -67\\11 \end{pmatrix} + t \begin{pmatrix} 12\\-9 \end{pmatrix}$ or $\mathbf{r}_{B} = (-67 + 12t)\mathbf{i} + (11 - 9t)\mathbf{j}$	B1	
	20 - 2.5t = -67 + 12t or $-7 - 6t = 11 - 9t$	M1	Equate x or y coordinates. Must have two terms in both coordinates.
	t = 6	A1	nfww Ignore other value of <i>t</i> .
	$r = \begin{pmatrix} 5 \\ -43 \end{pmatrix} \text{ only}$ or $r = 5\mathbf{i} - 43\mathbf{j}$	A1	A0 if further value of <i>r</i> found.
9(i)	Midpoint (1, 2)	B1	May be seen on diagram
	Gradient of $AB = -\frac{3}{4}$	B1	
-	Gradient of <i>PM</i> = $\frac{-1}{their \text{ gradient of } AB} = \frac{4}{3}$	M1	Use $m_1 \times m_2 = -1$
	Equation $PM \frac{y-2}{x-1} = \frac{4}{3}$	M1	dep Attempt to find equation of line with <i>their</i> midpoint and <i>their</i> gradient of <i>PM</i> . If $y = mx + c$ used c must be found.
	$y = \frac{4}{3}x + \frac{2}{3}$	A1	
9(ii)	$s = \frac{4}{3}r + \frac{2}{3}$	B1	FT

Cambridge O Level – Mark Scheme PUBLISHED

Question	Answer	Marks	Guidance
			neme October/, MM, MM, MM, MM, MM, MM, MM, MM, MM, M
9(iii)	$(r-1)^2 + (s-2)^2 = 100$ oe	B1	FT Use Pythagoras with <i>their</i> (1, 2)
	Eliminate <i>r</i> or <i>s</i>	M1	From one linear and one quadratic expression. Unsimplified
	$25r^2 - 50r - 875 = 0 \text{ oe}$ or $25s^2 - 100s - 1500 = 0 \text{ oe}$	A1	
	(5r+25)(5r-35) = 0 oe or (5s-50)(5s+30) = 0 oe	M1	Solve three term quadratic Can be implied by correct solution.
	<i>r</i> = 7, <i>s</i> = 10	A1	Do not award if negative values of r and s are also given nfww
	OR Equivalent method such as:		
	$\overrightarrow{MP} = \begin{pmatrix} a \\ b \end{pmatrix} \rightarrow a^2 + b^2 = 100 \text{ and } \frac{b}{a} = \frac{4}{3}$	B1	Using distance =10 and gradient = $\frac{4}{3}$.
	Eliminate <i>a</i> or <i>b</i>	M1	
	$a^{2} + \left(\frac{4a}{3}\right)^{2} = 100$ or $\left(\frac{3b}{4}\right)^{2} + b^{2} = 100$	A1	
	$\rightarrow a = (\pm)6$ and $b = (\pm)8$	M1	Solve
	r = 7, s = 10	A1	
10(i)	Quotient rule or product rule	M1	
	$\frac{x-2x\ln x}{x^4}$ or $\frac{x-\ln x.2x}{x^4}$ oe isw	A2/1/0	Minus one each error. Allow unsimplified.
10(ii)	$x - 2x \ln x = 0$	M1	Set $\frac{dy}{dx} = 0$ and attempt to solve. Must have two terms and obtain $\ln x = k$ only.
	$x = 1.65$ awrt or \sqrt{e}	A1	
	$y = 0.184$ awrt or $\frac{1}{2e}$	A1	

4037/22	- Cambridge O Level PUBLIS		Deme October/1 MMM Mansus Guidance Integrate <i>their</i> derivative from (i) which must have two terms. Condone	AS AS
Question	Answer	Marks	Guidance	7
10(iii)	$\frac{\ln x}{x^2} = \int \frac{1}{x^3} - \frac{2\ln x}{x^3} dx$	M1	Integrate <i>their</i> derivative from (i) which must have two terms. Condone omission of dx .	COM
	$\frac{-1}{2x^2}$	A1	Find $\int \frac{1}{x^3} dx$	
	$\int \frac{\ln x}{x^3} \mathrm{d}x = -\frac{1}{4x^2} - \frac{\ln x}{2x^2} + (C)$	A1	oe Rearrange and complete	
10(iv)	Insert limits and subtract correctly	M1	dep Must be inserting into two terms in <i>x</i> from (iii). Values explicitly seen if expression is incorrect.	
	$\frac{3}{16} - \frac{\ln 2}{8}$ or 0.101 awrt	A1		
11	$\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right) = -4$	B1	Seen anywhere	
	Attempt formula	M1		
	$x = \frac{-3 \pm 5}{2\left(\sqrt{5} - 3\right)}$	A1		
	Multiply by <i>their</i> $(\sqrt{5}+3)$	M1	Attempt must be seen with a further line of working. oe	
	$x = \sqrt{5} + 3$	A1	oe Mark final answer	
	$x = \frac{-1\left(\sqrt{5} + 3\right)}{4}$	A1	oe Mark final answer	