

Cambridge Assessment International Education Cambridge Ordinary Level

ADDITIONAL MATHEMATICS

4037/13

Paper 1

October/November 2019

MARK SCHEME
Maximum Mark: 80

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.

Cambridge International is publishing the mark schemes for the October/November 2019 series for most Cambridge IGCSE™, Cambridge International A and AS Level components and some Cambridge O Level components.

Cambridge O Level – Mark Scheme PUBLISHED

Generic Marking Principles

These general marking principles must be applied by all examiners when marking candidate answers. They should be applied alongside the specific content of the mark scheme or generic level descriptors for a question. Each question paper and mark scheme will also comply with these marking principles.

GENERIC MARKING PRINCIPLE 1:

Marks must be awarded in line with:

- the specific content of the mark scheme or the generic level descriptors for the question
- the specific skills defined in the mark scheme or in the generic level descriptors for the question
- the standard of response required by a candidate as exemplified by the standardisation scripts.

GENERIC MARKING PRINCIPLE 2:

Marks awarded are always whole marks (not half marks, or other fractions).

GENERIC MARKING PRINCIPLE 3:

Marks must be awarded **positively**:

- marks are awarded for correct/valid answers, as defined in the mark scheme. However, credit
 is given for valid answers which go beyond the scope of the syllabus and mark scheme,
 referring to your Team Leader as appropriate
- marks are awarded when candidates clearly demonstrate what they know and can do
- marks are not deducted for errors
- marks are not deducted for omissions
- answers should only be judged on the quality of spelling, punctuation and grammar when these
 features are specifically assessed by the question as indicated by the mark scheme. The
 meaning, however, should be unambiguous.

GENERIC MARKING PRINCIPLE 4:

Rules must be applied consistently e.g. in situations where candidates have not followed instructions or in the application of generic level descriptors.

GENERIC MARKING PRINCIPLE 5:

Marks should be awarded using the full range of marks defined in the mark scheme for the question (however; the use of the full mark range may be limited according to the quality of the candidate responses seen).

GENERIC MARKING PRINCIPLE 6:

Marks awarded are based solely on the requirements as defined in the mark scheme. Marks should not be awarded with grade thresholds or grade descriptors in mind.

© UCLES 2019 Page 2 of 9

Cambridge O Level – Mark Scheme **PUBLISHED**

October/1 Mymathscloud.com

MARK SCHEME NOTES

The following notes are intended to aid interpretation of mark schemes in general, but individual mark schemes may include marks awarded for specific reasons outside the scope of these notes.

Types of mark

- M Method marks, awarded for a valid method applied to the problem.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. For accuracy marks to be given, the associated Method mark must be earned or implied.
- B Mark for a correct result or statement independent of Method marks.

When a part of a question has two or more 'method' steps, the M marks are in principle independent unless the scheme specifically says otherwise; and similarly where there are several B marks allocated. The notation 'dep' is used to indicate that a particular M or B mark is dependent on an earlier mark in the scheme.

Abbreviations

awrt answers which round to cao correct answer only

dep dependent

FT follow through after error isw ignore subsequent working nfww not from wrong working

oe or equivalent

rot rounded or truncated

SC Special Case soi seen or implied

© UCLES 2019 Page 3 of 9

4037/13	Cambridge O Level – Mark Scheme PUBLISHED Answer Marks Guidance M1 for a Venn diagram showing at least 4 correct 'parts' in terms of r		
Question	Answer	Marks	Guidance
1(i)	28+x (28-x) 24+x	M1	for a Venn diagram showing at least 4 correct 'parts' in terms of x
	24-x 23-x 3+x	A1	for all 7 'parts' correct in terms of x on a Venn diagram or in working. May be implied by a correct equation.
	80 + 24 + x + 23 - x + 3 + x = 145 $50 + 28 + x + 28 - x + 24 + x = 145$ $75 + 28 + x + 24 - x + 3 + x = 145$ $50 + 80 + 75 - (23 + 28 + 24) + x = 145$ or equivalents	M1	for forming an equation in x using sum of 'parts' = 145 or $50+80+75-(23+28+24)+x=145$ Equations must be seen
	x=15	A1	from correct working only
1(ii)	43	B1ft	for their x plus 28
2(i)	40 45 00 45 90 x ²	В4	B1 for a maximum at $(0,2)$ B1 for minimums at $y = -8$ and no other minimums B1 for starting at $(-90^{\circ}, 2)$ and finishing at $(90^{\circ}, 2)$ B1 for a fully correct curve with correct shape, particularly at end points, that has earned all three previous B marks.
2(ii)	5	B1	
2(iii)	90°	B1	
3(i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = kx\left(3x^2 - 1\right)^{-\frac{4}{3}}$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{3} \times 6x \left(3x^2 - 1\right)^{-\frac{4}{3}}$	A1	
3(ii)	When $x = \sqrt{3}$, $\frac{dy}{dx} = -\frac{\sqrt{3}}{8}$ $-\frac{\sqrt{3}}{8}p \text{ or } -0.217p$	B1	FT on their $\frac{dy}{dx}$ of the form $kx(3x^2-1)^{-\frac{4}{3}}$

4037/13	Cambridge O Level – Mark Scheme PUBLISHED Answer Marks Guidance When $x = \sqrt{3}$, $y = \frac{1}{2}$ October/ B1 for $y = \frac{1}{2}$		
Question	Answer	Marks	Guidance
3(iii)	When $x = \sqrt{3}$, $y = \frac{1}{2}$	B1	for $y = \frac{1}{2}$
	Normal: $y - \frac{1}{2} = \frac{8}{\sqrt{3}} (x - \sqrt{3})$	M1	Dep on M1in part(i). An equation of the normal using <i>their</i> normal gradient, $\sqrt{3}$ and <i>their</i> y
		A1	allow unsimplified
4(i)	$-\frac{1}{13}\begin{pmatrix} -1 & -2\\ -4 & 5 \end{pmatrix} \text{ oe }$	B2	B1 for $-\frac{1}{13}$ B1 for $\begin{pmatrix} -1 & -2 \\ -4 & 5 \end{pmatrix}$
4(ii)	$\begin{array}{ c c }\hline \frac{1}{13} \begin{pmatrix} 1 & 2 \\ 4 & -5 \end{pmatrix} \begin{pmatrix} 12 \\ 7 \end{pmatrix}$	M1	for pre-multiplication by <i>their</i> inverse from (i)
	$=\frac{1}{13}\binom{26}{13}$	M1	for correct method for matrix multiplication
	$=\begin{pmatrix} 2\\1 \end{pmatrix}$	A1	
	x = 1.11	B1	
	$y = \frac{\pi}{4}$ or 0.785	B1	
5(i)	$\frac{\mathrm{d}}{\mathrm{d}x}\Big(\ln\Big(x^2+3\Big)\Big) = \frac{2x}{\Big(x^2+3\Big)}$	B1	
	$\frac{dy}{dx} = (x^2 + 3)\frac{2x}{(x^2 + 3)} + 2x\ln(x^2 + 3)$	M1	for product rule
		A1	FT their $\frac{2x}{(x^2+3)}$
5(ii)	$(x^2+3)\ln(x^2+3) = \int 2x + 2x\ln(x^2+3) dx$	M1	for using <i>their</i> result from (i) for $2x + kx \ln(x^2 + 3)$
	$\int x \ln\left(x^2 + 3\right) \mathrm{d}x$	A1	
	$\int x \ln(x^2 + 3) dx$ $= \frac{1}{2} (x^2 + 3) \ln(x^2 + 3) - \frac{x^2}{2} (+c)$		

Question	Answer	Marks	Guidance
6(i)	$\ln y = \ln A + x^2 \ln b \text{ or}$ $\lg y = \lg A + x^2 \lg b$	B1	May be implied by a table of values for x^2 and $\ln y$ or $\lg y$ or axes labelled $\ln y$ or $\lg y$ and x^2
	lty]	M1	for attempt to plot either $\ln y$ or $\lg y$ against x^2 using an evenly spaced scale on each axis.
		A2	A2 All points on a correct line (for $1 \le x^2 \le 9$) with axes correctly labelled A1 One point not on the correct line or a correct line with axes not correctly labelled. A0 Two or more points not on the correct line or one point not on the line and axes incorrect
6(ii)	Gradient = $\ln b$ or $\lg b$ $\ln b \approx 0.7$ or $\lg b \approx 0.3$ leading to	M1	for a complete method using the gradient of <i>their</i> straight-line graph of $\lg y$ or $\lg y$ against x^2 to obtain b
	b=2 (allow 1.6-2.4)	A1	from correct working
	Intercept = $\ln A$ or $\lg A$ $\ln A \approx 1.1$ $\lg A \approx 0.5$ leading to	M1	for a complete method using intercept of their straight-line graph of $\lg y$ or $\ln y$ against x^2 to find A
	A=3 (allow 2.5 – 3.6)	A1	from correct working
6(iii)	$100 = 3(2^{x^2})$ or $\ln 100 = their 1.1 + their 0.7x^2$ or $\lg 100 = their 0.5 + their 0.3x^2$ or reading from $\lg y = 2$ to obtain x^2 or from $\ln y = 4.6$ to obtain x^2	M1	for a valid method to find x^2 Substitution methods should be using values of A and b in range
	leading to $x = 2.25$ (allow $2.0 - 2.7$)	A1	for an answer in range from correct working
7(a)(i)	15120	B1	
7(a)(ii)	1680	B1	
7(a)(iii) Method 1	Total = 2310	В3	B1 1st digit is 7 or 9 1680 or 210×8 B1 1st digit is 8 630 or 210×3
7(a)(iii) Method 2	Total = 2310	ВЗ	B1 for 5th digit is 2,4 or 6 1890 or 210×9 B1 for 5 th digit is 8 420 or 210×2

Page 6 of 9

Question	Answer	Marks	Guidance
7(b)(i)	3003	B1	
7(b)(ii)	28	B1	
7(b)(iii)	Total 1419	В3	B1 Including husband and wife 495 B1 Excluding husband and wife 924
8(a)(i)	$\log_a a + 2\log_a y + \log_a x$	M1	for $\log_a a + \log_a x + \log_a y^2$ and $\log_a y^2 = 2\log_a y$
	1+2q+p	A1	
8(a)(ii)	$3\log_a x - \log_a y - \log_a a$	M1	for $\log_a x^3 - (\log_a a + \log_a y)$ and $\log_a x^3 = 3\log_a x$
	3p-q-1 or 3p-(q+1)	A1	
8(a)(iii)	$\frac{1}{p} + \frac{1}{q}$	B1	
8(b)	$m-3m^2+4=0$	M1	for obtaining a quadratic in m or 3 ^x
	$m = \frac{4}{3}$, (-1) $x = \frac{\lg \frac{4}{3}}{\lg 3}$, $x = \frac{\ln \frac{4}{3}}{\ln 3}$ or $\lg_3 \frac{4}{3}$	M1	Dep for attempt to solve quadratic and deal with 3^x correctly
	x = 0.262 only	A1	
9(i)	$100 = 2r + 2r\theta + 3r\theta$	M1	for addition of $2r$ and two arc lengths with at least one correct arc length
	$\theta = \frac{100 - 2r}{5r}$ or $\frac{20}{r} - \frac{2}{5}$ oe	A1	
9(ii)	$\frac{1}{2}9r^2\theta - \frac{1}{2}4r^2\theta$	M1	for subtraction of two sector areas with at least one sector area correct.
	$\frac{5r^2}{2} \left(\frac{100 - 2r}{5r} \right)$	A1	Must expand and simplify to obtain given answer $50r - r^2$
9(iii)	$\frac{dA}{dr} = 50 - 2r$ $0 = 50 - 2r$ leading to $r = 25$	M1	for differentiation and equating to zero and obtaining r or for using completing the square $-(25-r)^2 + 25^2$
	Max when $A = 625$	A1	
-		•	

4037/13	Cambridge O Level – Mark Scheme PUBLISHED Answer Marks Guidance When $r = 10$, $\frac{dA}{dt} = 30$ October/1 Thurston, Thur		
Question	Answer	Marks	Guidance
9(iv)	When $r = 10$, $\frac{dA}{dr} = 30$	B1	COM
	$\frac{\mathrm{d}r}{\mathrm{d}t} = \frac{3}{30}$	M1	for $\frac{1}{dt} = \frac{1}{their30}$ where their 30 has been
			obtained from an evaluation of $\frac{dA}{dr}$ at $r=10$
	$\frac{\mathrm{d}r}{\mathrm{d}t} = 0.1 \mathrm{or} \frac{1}{10}$	A1	
9(v)	$\frac{\mathrm{d}\theta}{\mathrm{d}r} = -\frac{20}{r^2} \text{ oe}$	B1	
	$\frac{\mathrm{d}\theta}{\mathrm{d}r} = -\frac{1}{5}\mathrm{oe}$	M1	for $their \frac{dr}{dt} \times their \frac{d\theta}{dr}$ with both
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = \frac{1}{10} \times -\frac{1}{5} \text{ oe}$		evaluated at $r = 10$
	$\frac{\mathrm{d}\theta}{\mathrm{d}t} = -\frac{1}{50} \text{ or } -0.02$	A1	
10(a)(i)	$\pm \frac{2020}{5}$	M1	for finding the gradient of the relevant part
	8	A1	
10(a)(ii)	7.5	B1	
10(a)(iii)	$\frac{1}{2}(5+7.5)20 + \left(\frac{1}{2} \times 2.5 \times 20\right)$ or $20 \times 5 + \left(\frac{1}{2} \times 2.5 \times 20\right) + \left(\frac{1}{2} \times 2.5 \times 20\right)$ oe	M1	for a correct expression for total area using <i>their</i> 7.5
	150	A1	
10(b)(i)	$x = 3e^{2t} + t + c$	M1	for $ke^{2t} + t$ Condone omission of c
	$0 = 3e^{0} + 0 + c$ When $t = 0$, $x = 0$ so $c = -3$	M1	Dep for substitution to find c
	$x = 3e^{2t} + t - 3$	A1	

Cambridge O Level – Mark Scheme **PUBLISHED**

Question	Answer	Marks	Guidance
10(b)(ii)	$\frac{dv}{dt} = 12e^{2t}$ so $12e^{2t} = 24$	M1	for ke^{2t} equated to 24
	$2t = \ln 2$	M1	Dep for correct order of operations to obtain 2 <i>t</i>
	$t = \frac{1}{2} \ln 2$, $\ln \sqrt{2}$ or 0.347	A1	

© UCLES 2019 Page 9 of 9