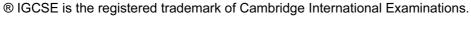
www.mymathscloud.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the October/November 2015 series

4037 ADDITIONAL MATHEMATICS


4037/23 Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2015 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

	Mr. 3 3
Syllabus	P. My Oak
4007	0.0

F			- 34
Page 2	Mark Scheme	Syllabus	P. My Open
	Cambridge O Level – October/November 2015	4037	23
Abbrevi	ations		scloud cop
awrt	answers which round to		

Abbreviations

answers which round to awrt cao correct answer only

dependent dep

follow through after error FTignore subsequent working isw

oe or equivalent

rounded or truncated rot

SC Special Case seen or implied soi

without wrong working www

1	$y = x^{3} + 3x^{2} - 5x - 7$ $\frac{dy}{dx} = 3x^{2} + 6x - 5$ $x = 2 \rightarrow \frac{dy}{dx} = 19$ $y = 3$ eqn of tangent: $\frac{y - 3}{x - 2} = 19 \rightarrow (y = 19x - 35)$	M1 A1 A1FT B1 A1FT	Differentiate on their $\frac{dy}{dx}$
2	$2x + k + 2 = 2x^2 + (k+2)x + 8$	M1	eliminate y or x
	$2x^2 + kx + 6 - k (= 0)$	A1	correct quadratic
	$b^2 - 4ac = k^2 - 4 \times 2(6 - k)$	M1	use discriminant
	$k^2 + 8k - 48$ (>0)		
	(k+12)(k-4) (>0)	DM1	attempt to solve 3 term quadratic
	k < -12 or $k > 4$	A1 A1	k = -12 and $k = 4$
3 (a)	$\frac{dy}{dx} = \frac{(2-x^2)3x^2 - x^3(-2x)}{(2-x^2)^2} = \left(\frac{6x^2 - x^4}{(2-x^2)^2}\right)$	M1 A2,1,0	For quotient rule (or product rule on correct <i>y</i>)
(b)	$\frac{\mathrm{d}y}{\mathrm{d}x} = x \times \frac{1}{2} (4x+6)^{-0.5} \times 4 + (4x+6)^{0.5}$	M1 A1	product rule
	$= \frac{6(x+1)}{(4x+6)^{0.5}} \to k = 6$	A1	
4	$x(4-\sqrt{3})=13$	M1	eliminate y or x
	$x = \frac{13(4+\sqrt{3})}{(4-\sqrt{3})(4+\sqrt{3})}$ $= 4+\sqrt{3}$ $y = 1-2\sqrt{3}$	A1 M1	simplified rationalisation
	$-4+\sqrt{3}$	A 1	
	$v = 1 - 2\sqrt{3}$	A1 A1	

			3, 3
Page 3	Mark Scheme	Syllabus	P. Janan
	Cambridge O Level – October/November 2015	4037	23

5		(x-3)(x-3)(x-1) = 0	M1	
		$x^3 - 7x^2 + 15x - 9 = 0$		
		a = -7	A1	
		b=15	A1	
		c = -9	A1	AG for <i>c</i>
6		$\log_x 2 = \frac{\log_2 2}{\log_2 x}$	B1	
		$2\log_2 x = \log_2 x^2$	B1	
		$3 = \log_2 8$	B1	
		$8x^2 - 29x + 15 \ (=0)$	M1	obtain quadratic and attempt to solve
		$\rightarrow (8x-5)(x-3) \ (=0)$	1111	
		$x = \frac{5}{8} \text{ or } x = 3$	A1	
7	(i)	$a = -\frac{20}{\left(t+2\right)^3}$	M1 A1	$k(t+2)^{-3}$ oe $k = -20$
		$t = 3 \rightarrow a = -0.16 \text{ m/s}^2$	A1FT	
	(ii)	$\frac{10}{(t+2)^2} \text{ is never zero.}$ $s = -\frac{10}{t+2} + 5$	B1	
	(iii)	$s = -\frac{10}{t+2} + 5$	M1	integrate $\frac{k}{t+2}$
			A1	k = -10
			A1	+5
	(iv)	$s = \left[-\frac{10}{t+2} \right]_3^8 = -1 + 2$	M1	insert limits and subtract
		=1	A1	

			3, 3
Page 4	Mark Scheme	Syllabus	P. My
	Cambridge O Level – October/November 2015	4037	23 7750

8	(i)	$\sec^{2} x + \csc^{2} x = \frac{1}{\cos^{2} x} + \frac{1}{\sin^{2} x}$	B1	
		$=\frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x}$	B1	add fractions
		$=\frac{1}{\sin^2 x \cos^2 x}$	B1	use of $\sin^2 x + \cos^2 x = 1$
		$= \sec^2 x \csc^2 x$	B1	fully correct solution
	(ii)	$\frac{1}{\cos^2 x \sin^2 x} = 4 \frac{\sin^2 x}{\cos^2 x}$	M1	
		$\rightarrow 4\sin^2 x = 1$	A1	correct simplified equation
		$\sin x = \pm \frac{1}{\sqrt{2}}$		
		$x = 135^{\circ}, 225^{\circ}$	A1, A1	
9	(i)	$f(x) = 3x^2 + 12x + 2 = 3(x+2)^2 - 10$	D1	
		a=3	B1	
		b=2	B1 B1	
		c = -10	ы	
	(ii)	minimum f(x) = -10	B1FT	
	(11)	at x = -2	B1FT	
			DILL	
	(iii)	$f\left(\frac{1}{y}\right) = 0 \to \left(\frac{1}{y}\right) = (\pm)\sqrt{\frac{10}{3}} - 2$	M1	obtain explicit expression for $\frac{1}{y}$ or y
		y = -5.74, -0.26	A1, A1	

			23, 32
Page 5	Mark Scheme	Syllabus	P. J. Marins
	Cambridge O Level – October/November 2015	4037	2.5
			300

				04
10	(i)	$\frac{d}{dx}(e^{2-x^2}) = -2xe^{2-x^2}$	B1	k = -2
	(ii)	$-\frac{3e^{2-x^2}}{2} + c$	M1 A1FT	De^{2-x^2} $D = \frac{-3}{2} \text{ or } \frac{3}{k}$
	(iii)	$\left[-\frac{3e^{2-x^2}}{2} \right]_1^{\sqrt{2}} = -\frac{3}{2} + \frac{3}{2}e$ 2.58	M1 A1	insert limits on their (ii) and subtract
	(iv)	$y = 3xe^{2-x^2}$	M1 A1	product rule
		$\frac{dy}{dx} = 3x(-2xe^{2-x^2}) + 3e^{2-x^2}$ $\frac{dy}{dx} = 0 \to x = \pm \frac{1}{\sqrt{2}} = \pm 0.707$	A1	both x or a pair
		$y = \pm \frac{3}{\sqrt{2}} e^{1.5} = \pm 9.51$	A1	both y
11	(i)	$\log N = \log A - t \log b$	B1	
	(ii)	t 1 2 3 4 5 6 log N 3.30 3.11 2.95 2.77 2.60 2.41 ln N 7.60 7.17 6.79 6.38 5.98 5.56	M1	find logs of N
			M1	plot $\log N$ or $\ln N$ against t or $-t$
			A1	straight line passing through five points
	(iii)	gradient = $-\log b = \frac{2.415 - 3.3}{5} \rightarrow b = 1.5$	DM1	set gradient = $-\log b$ and solve
		intercept = $\log A = 3.47 \rightarrow A = 2950$	DM1 A1	set intercept = $log A$ and solve both values correct
	(iv)	$t = 10 \to N = \frac{2950}{1.5^{10}} = 51$	В1	
	(v)	$N = 10 \rightarrow 1.5' = 295 \rightarrow t = \frac{\log 295}{\log 1.5}$ = 14 years	M1 A1	substitute $N = 10$, their A , b into given or transformed equation

			7.7. 2
Page 6	Mark Scheme	Syllabus	P. Jan
	Cambridge O Level – October/November 2015	4037	23 Phys 195
			· · · · · · · · · · · · · · · · · · ·

	<u></u>		
12	$v_{p} = \begin{pmatrix} 250\cos 20^{\circ} \\ 250\sin 20^{\circ} \end{pmatrix}, \ v_{r} = \begin{pmatrix} V\cos 30^{\circ} \\ V\sin 30^{\circ} \end{pmatrix}, \ v_{w} = \begin{pmatrix} 0 \\ w \end{pmatrix}$	В1	0
	$ \begin{pmatrix} v_r = v_p + v_w \\ \left(\frac{V \cos 30^{\circ}}{V \sin 30^{\circ}} \right) = \begin{pmatrix} 250 \cos 20^{\circ} \\ 250 \sin 20^{\circ} \end{pmatrix} + \begin{pmatrix} 0 \\ w \end{pmatrix} $		
	$V = \frac{250\cos 20^{\circ}}{\cos 30^{\circ}}$ $= 271 \text{ km/hr}$	M1 A1	equate x components and solve
	$w = V \sin 30^{\circ} - 250 \sin 20^{\circ}$ = 50.1 km/hr	M1 A1	equate y components and solve
	OR triangle with sides $250 V w$ opposite angles $60^{\circ} 110^{\circ} 10^{\circ}$	В1	
	sine rule: $\frac{w}{\sin 10^{\circ}} = \frac{250}{\sin 60^{\circ}}$ $w = 50.1 \text{km/hr}$	M1 A1	apply to correct triangle and solve
	$\frac{V}{\sin 110^{\circ}} = \frac{250}{\sin 60^{\circ}}$ $V = 271 \text{km/hr}$	M1 A1	apply to correct triangle and solve