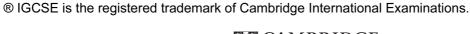
www.mymathscloud.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the October/November 2014 series

4037 ADDITIONAL MATHEMATICS


4037/13 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

			2.7. 32
Page 2	Mark Scheme	Syllabus	P. Jan
	Cambridge O Level – October/November 2014	4037	13 PH/SC 1985

	_	ı	
1	a=3	B1	
	b=2	B1	
	c=4	B1	
2	$x^2 = 16 \text{ or } y^2 - 4y + 3 = 0$	M1	for correct elimination of one variable and attempt to form a quadratic equation in <i>x</i> or <i>y</i> .
	$x = \pm 4$ y = 1, 3 Points (-4, 1) and (4, 3)	A1 A1	1
	$Line AB = \sqrt{8^2 + 2^2}$	M1	for use of Pythagoras theorem
	$=\sqrt{68} \text{ or } 2\sqrt{17}$	A1	allow either form
3 (i)	n(A) = 2 $n(B) = 3$	B1 B1	B0 for $n(2)$, $\{2\}$, $\{0\}$, \emptyset , $\{\}$ etc.
	n(C) = 0	B1	() () ()
(ii)	$A \cup B = \{-1, -2, -3, 3\}$	B1	
(iii)	$A \cap B = \{-2\}$	B1	
(iv)	ξ , 'the universal set', R, 'real numbers', $\{x:x\in \}$	B1	
4 (a)	$\tan x = -\frac{5}{3}$	M1	Correct statement or $\tan x = -1.67$
	$x = 121.0^{\circ}, 301.0^{\circ}$	A1 A1ft	A1 for either correct solution ft from <i>their</i> first solution
(b)	$\sin\left(3y + \frac{\pi}{4}\right) = \frac{1}{2}$	M1	for dealing correctly with cosec and attempt to solve subsequent equation
	$3y + \frac{\pi}{4} = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6}$	A1	for $\frac{\pi}{6}$, $\frac{5\pi}{6}$, or $\frac{13\pi}{6}$, or $\frac{17\pi}{6}$
	$3y = -\frac{\pi}{12}, \frac{7\pi}{12}, \frac{23\pi}{12}, \frac{31\pi}{12}$	DM1	for correct order of operations
	$y = \frac{7\pi}{36}, \frac{23\pi}{36}, \frac{31\pi}{36}$ (0.611, 2.01 and 2.71)	A1, A1	A1 for one correct solution A1 for both the other correct solutions and no others in range.

			.7, 2
Page 3	Mark Scheme	Syllabus	P. My
	Cambridge O Level – October/November 2014	4037	13 8//20 03
			°C/6,

5	(a) (i)	$ \begin{pmatrix} 12 & 2 & 1 \\ 9 & 3 & 0 \\ 8 & 5 & 1 \\ 11 & 2 & 0 \end{pmatrix} \begin{pmatrix} 0.5 \\ 0.4 \\ 0.45 \end{pmatrix} = \begin{pmatrix} 7.25 \\ 5.70 \\ 6.45 \\ 6.30 \end{pmatrix} $	M1	for correct compatible matrices in the correct order. Allow 1 error in each matrix. Allow if done in cents
		or $(0.5 0.4 0.45)$ $\begin{pmatrix} 12 & 9 & 8 & 11 \\ 2 & 3 & 5 & 2 \\ 1 & 0 & 1 & 0 \end{pmatrix}$	DM1	for a correct method for multiplying their matrices to obtain an appropriate 4 by 1 or 1 by 4 matrix.
		=(7.25 5.70 6.45 6.30)	A2,1,0	A2 all correct
	(ii)	25.70	B1	or A1 3 correct elements. Allow 25.7
	(11)	23.70	БI	Allow 23.7
	(b)	$\mathbf{Y} = \mathbf{X}^{-1} \text{ or } \mathbf{Y} = \mathbf{X}^{-1} \mathbf{I}$	M1	for matrix algebra
		$\mathbf{Y} = \frac{1}{2} \begin{pmatrix} 1 & -4 \\ 0 & 22 \end{pmatrix}$ or $\begin{vmatrix} \frac{1}{22} & -\frac{1}{22} \\ \frac{1}{22} & \frac{1}{22} \end{vmatrix}$	A1	for $\frac{1}{22}$
		$\mathbf{Y} = \frac{1}{22} \begin{pmatrix} 1 & -4 \\ 5 & 2 \end{pmatrix} \text{ or } \begin{pmatrix} \frac{1}{22} & -\frac{4}{22} \\ \frac{5}{22} & \frac{2}{22} \end{pmatrix}$		for $k \begin{pmatrix} 1 & -4 \\ 5 & 2 \end{pmatrix}$
		Alternative method: $ \begin{pmatrix} 2 & 4 \\ -5 & 1 \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} $ $ 2a + 4c = 1, 2b + 4d = 0 $	M1	for a complete method using simultaneous equations
		-5a + c = 0, -5b + d = 1		$a = \frac{1}{22}$ and $c = \frac{5}{22}$
				or $b = -\frac{4}{22}$ and $d = \frac{2}{22}$
		leading to $=\frac{1}{22}\begin{pmatrix} 1 & -4 \\ 5 & 2 \end{pmatrix}$ oe	A1	for correct matrix

			3, 3
Page 4	Mark Scheme	Syllabus	P. My
	Cambridge O Level – October/November 2014	4037	13 8/1/20 1/35

			.0,
6 (i)	$\cos 0.9 = \frac{6}{OC}$ or $\frac{OC}{\sin 0.9} = \frac{12}{\sin(\pi - 1.8)}$ $OC = \frac{6}{\cos 0.9} = 9.652$	M1	for correct use of cosine, sine rule, cosine rule or any other valid method
	or $OC = \frac{12\sin 0.9}{\sin(\pi - 1.8)} = 9.652$	A1	for manipulating correctly to $OC = 9.652(35)$ Must have 4 th figure (or more) for rounding
(ii)	Perimeter = $(0.9 \times 12) + 9.652 + (12 - 9.652)$	B1 M1	for arc length for attempt to add the correct lengths
	= 22.8	A1	
(iii)	Area = $\left(\frac{1}{2} \times 12^2 \times 0.9\right) - \left(\frac{1}{2} \times 9.652^2 \sin(\pi - 1.8)\right)$	B1	for area of sector, allow unsimplified
		B1	for area of isosceles triangle
			$\frac{1}{2}(9.65(2))^2 \sin(\pi - 1.8)$ or
			$\frac{1}{2}(12 \times 6 \tan 0.9)$ or
			$\frac{1}{2}(12 \times 9.65(2) \times \sin 0.9)$, allow
	64.8 - 45.36 = 19.4 to 19.5	B1	unsimplified. for answer in range 19.4 to 19.5
	Alternative Method:		
	$\frac{1}{2}(12 - 9.652) \times 9.652 \times \sin 1.8$	B1	for area of triangle ACB, unsimplified
	$\frac{1}{2}12^2(0.9-\sin 0.9)$	B1	for area of segment, unsimplified
	11.04 + 8.40 Area =19.4 to 19.5	B1	answer in range 19.4 to 19.5
7	$1 + 2\log_5 x = \log_5 (18x - 9)$	B1, B1	B1 for dealing with '1', B1 for dealing with '2'
	$\log_5 5 + \log_5 x^2 = \log_5 (18x - 9)$	M1	for a correct use of addition or subtraction of logarithms
	$5x^2 = 18x - 9$ $(5x - 3)(x - 3) = 0$	DM1	for elimination of logarithms to form a 3 term quadratic and for
	$x = \frac{3}{5}, 3$	A1	solution of quadratic for both x values
	•	•	

			1. W.	2
Page 5	Mark Scheme	Syllabus	Party	O. John St.
	Cambridge O Level – October/November 2014	4037	13	No a
				901

			O
8 (i)	$f'(x) = \left(x \times \frac{3x^2}{x^3}\right) + \left(\ln x^3\right)$	M1 B1	for differentiation of a product for differentiation of $\ln x^3$
	$=3+3\ln x, =3(1+\ln x)$	A1	for simplification to gain given
	or $f(x) = 3x \ln x$	B1	$\frac{\text{answer}}{\text{for use of } \ln x^3 = 3 \ln x}$
	$f'(x) = \left(3x \times \frac{1}{x}\right) + 3\ln x,$	M1	for differentiation of a product
	$=3(1+\ln x)$	A1	for simplification to gain given answer
(ii)	$\int 3(1+\ln x) dx = x \ln x^3 \text{or} 3x \ln x$	M1	for realising that differentiation is the reverse of integration and using
	$\int 1 + \ln x dx = \frac{1}{3} x \ln x^3 \text{or} x \ln x$	A1	(i)
(iii)	$x \ln x - \int 1 dx$ or $\left[\frac{1}{3} x \ln x^3 \right] - \int 1 dx$	DM1	for using answer to (ii) and subtracting $\int 1 dx$ dependent on M mark in (ii)
	$\left[\left[x \ln x - x \right]_1^2 \text{or} \left[\frac{1}{3} x \ln x^3 - x \right]_1^2 \right]$	DM1	for correct application of limits
	$= 2 \ln 2 - 2 + 1 = -1 + \ln 4$	A1	from correct working
9 (a)	$5^p = 625$, so $p = 4$	B1	
	$\begin{vmatrix} {}^{4}C_{1}5^{p-1}(-q) = -1500 \\ 4 \times 125(-q) = -1500 \\ q = 3 \end{vmatrix}$	M1 A1	their p substituted in ${}^{p}C_{1}5^{p-1}(-q)$ or in ${}^{p}C_{1}5^{p-1}(-qx)$ unsimplified
	${}^{4}C_{2}5^{p-2}q^{2} = r$	M1	their p and q substituted in ${}^{p}C_{2}5^{p-2}(-q)^{2}$ or ${}^{p}C_{2}5^{p-2}(-qx)^{2}$ unsimplified
	r = 1350	A1	
(b)	$\int_{12}^{12} C_3(2x)^9 \left(\frac{1}{4x^3}\right)^3$	M1	for identifying correct term
		DM1	for attempt to evaluate correct expression
	Term is 1760	A1	must be evaluated

			mn n
Page 6	Mark Scheme	Syllabus	P. My Oky
	Cambridge O Level – October/November 2014	4037	13 91/150

10 (a)	$\frac{5^x}{5^{2(3y-2)}} = 1$ or $\frac{3^x}{3^{3(y-1)}} = 3^4$ oe	M1	for obtaining one correct equation in powers of 5, 3, 25, 27 or 81
	x = 6y - 4	A1	for $x = 6y - 4$ oe linear equation
	x = 3y + 1	A1	for $x = 3y + 1$ oe linear equation
		M1	for attempt to solve linear
	Leads to $x = 6$, $y = \frac{5}{3}$	A1	simultaneous equations which have been obtained correctly for both.
(b)	Using the cosine rule: $(1+2\sqrt{3})^2 = (2+\sqrt{3})^2 + 2^2 - 4(2+\sqrt{3})\cos A$	M1	for correct substitution in cosine
		1411	rule, may use in form of $\cos A =$
	$\cos A = \frac{\left(13 + 4\sqrt{3}\right) - \left(7 + 4\sqrt{3}\right) - 4}{-4\left(2 + \sqrt{3}\right)} \text{ oe}$	DM1	for attempt to make cos A subject and simplify
	$\cos A = \frac{-1}{2(2+\sqrt{3})} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$	DM1	for rationalisation.
	$\cos A = -1 + \frac{\sqrt{3}}{2}$	A1	

			3, 32
Page 7	Mark Scheme	Syllabus	P. Jan
	Cambridge O Level – October/November 2014	4037	13 PHy 1915
	-		

		·		
11	(i)	$\frac{dy}{dx} = (x+5)2(x-1) + (x-1)^2$	M1	for differentiation of a product, allow unsimplified
			A1	correct
		$\frac{\mathrm{d}y}{\mathrm{d}x} = (x-1)(3x+9)$		
		When $\frac{dy}{dx} = 0$	DM1	for equating to zero and solution of
		x = 1	A1	quadratic
		x = -3	A1	
		Alternative method:		
		$y = x^3 + 3x^2 - 9x + 5$	M1	for expansion of brackets and differentiation of each term of a 4 term cubic
		$\frac{\mathrm{d}y}{\mathrm{d}x} = 3x^2 + 6x - 9$	A1	
		When $\frac{dy}{dx} = 0$	DM1	for equating to zero and solution of 3 term quadratic
		x = 1	A1	from correct quadratic equation
		x = -3	A1	from correct quadratic equation
	(ii)	$\int x^3 + 3x^2 - 9x + 5 dx$	M1	for correct attempt to obtain and integrate a 4 term cubic
		$= \frac{x^4}{4} + x^3 - \frac{9x^2}{2} + 5x \ (+c)$	A2,1,0	A2 for 4 correct terms or A1 for 3 correct terms
	(iii)	$\left[\frac{x^4}{4} + x^3 - \frac{9x^2}{2} + 5x \right]_{-5}^{1}$ $\left(\frac{1}{4} + \frac{9}{4} + $	M1	for correct substitution of limits 1 and -5 for <i>their</i> (ii)
		$= \left(\frac{1}{4} + 1 - \frac{9}{2} + 5\right) - \left(\frac{625}{4} - 125 - \frac{225}{2} - 25\right)$ $= 108$	A1	
	(iv)	When $x = -3$, $y = 32$	M1	for realising that the <i>y</i> -coordinate of the maximum point is needed.
		k > 32	A1	•