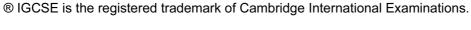
www.mymathscloud.com

CAMBRIDGE INTERNATIONAL EXAMINATIONS

Cambridge Ordinary Level

MARK SCHEME for the October/November 2014 series

4037 ADDITIONAL MATHEMATICS


4037/12 Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2014 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

			7, 7, 3
Page 2	Mark Scheme	Syllabus	P. Jana
	Cambridge O Level – October/November 2014	4037	
			W

1		$\frac{dy}{dx} = 2x - \frac{16}{x^2}$ When $\frac{dy}{dx} = 0$, $x = 2, y = 12$	M1 A1 DM1	for attempt to differentiate all correct for equating $\frac{dy}{dx}$ to zero and an attempt to solve for x . A1 for both, but no extra solutions
2	(a)	2	B1 B1	for correct shape for max value of 2, starting at (0, 2) and finishing at (180°, 2) for min value of –4
	(b) (i) (ii)	-4 4 60° or $\frac{\pi}{3}$ or 1.05 rad	B1 B1	must be positive
3	(i)	$y = 4(x+3)^{\frac{1}{2}}(+c)$ $10 = 4\left(9^{\frac{1}{2}}\right) + c$ $c = -2$ $y = 4(x+3)^{\frac{1}{2}} - 2$	M1, A1 M1	M1 for $(x+3)^{\frac{1}{2}}$, A1 for $4(x+3)^{\frac{1}{2}}$ for a correct attempt to find c , but must be from an attempt to integrate Allow A1 for $c = -2$
	(ii)	$6 = 4(x+3)^{\frac{1}{2}} - 2$ $x = 1$	A1 ft	ft for substitution into <i>their</i> equation to obtain <i>x</i> ; must have the first M1

			23, 32
Page 3	Mark Scheme	Syllabus	P. J. Nay
	Cambridge O Level – October/November 2014	4037	12 %

$5y^{2} - 7y + 2 = 0$ $(5y - 2)(y - 1) = 0$ $y = \frac{2}{5}, x = \frac{\ln 0.4}{\ln 5}$ $x = -0.569$ $y = 1, x = 0$ $\frac{dy}{dx} = 3x^{2} - \frac{1}{x}$ When $x = 1, y = 1$ and $\frac{dy}{dx} = 2$ Tangent: $y - 1 = 2(x - 1)$	M1 M1 A1 B1 M1	B1 for 5, B1 for -7 for solution of quadratic equation from (i) for use of logarithms to solve equation of the type $5^x = k$ must be evaluated to 3sf or better for attempt to differentiate for $y = 1$
$y = \frac{2}{5}, x = \frac{\ln 0.4}{\ln 5}$ $x = -0.569$ $y = 1, x = 0$ $\frac{dy}{dx} = 3x^2 - \frac{1}{x}$ When $x = 1$, $y = 1$ and $\frac{dy}{dx} = 2$	M1 A1 B1	from (i) for use of logarithms to solve equation of the type $5^x = k$ must be evaluated to 3sf or better for attempt to differentiate
$x = -0.569$ $y = 1, x = 0$ $\frac{dy}{dx} = 3x^2 - \frac{1}{x}$ When $x = 1, y = 1$ and $\frac{dy}{dx} = 2$	A1 B1 M1	for use of logarithms to solve equation of the type $5^x = k$ must be evaluated to 3sf or better for attempt to differentiate
$y = 1, x = 0$ $\frac{dy}{dx} = 3x^2 - \frac{1}{x}$ When $x = 1, y = 1$ and $\frac{dy}{dx} = 2$	B1 M1	for attempt to differentiate
$\frac{dy}{dx} = 3x^2 - \frac{1}{x}$ When $x = 1$, $y = 1$ and $\frac{dy}{dx} = 2$	M1	
When $x = 1$, $y = 1$ and $\frac{dy}{dx} = 2$		
When $x = 1$, $y = 1$ and $\frac{dy}{dx} = 2$	B1	for $y = 1$
	DM1	for attempt to find equation of tangent
(y=2x-1)	A1	allow equation unsimplified
Mid-point (5, 9)	B1	for midpoint from given
9 = 2(5) - 1	B1	coordinates for checking the mid-point lies on tangent
Alternative Method: Tangent equation $y = 2x - 1$ Equation of line joining (-2, 16) and (12, 2)		
y = -x + 14 Solve simultaneously $x = 5$, $y = 9$	B1	for a complete method to find the coordinates of the point of
Mid-point (5, 9)	B1	intersection for midpoint from given coordinates
$(2+px)^6 = 64+192px+240p^2x^2$	B1	for $240p^2$ or $240p^2x^2$ or ${}^6C_2 \times 2^4 \times (px)^2$ or ${}^6C_2 \times 2^4 \times p^2$ or ${}^6C_2 \times 2^4 \times p^2x^2$
$240p^2 = 60$	M1	for equating <i>their</i> term in x^2 to 60
$p = \frac{1}{2}$	A1	and attempt to solve
$(3-x)(64+192px+240p^2x^2)$	B1 ft	ft for 192 <i>p</i> , 96 or 192 × <i>their p</i>
Coefficient of x^2 is $180-192p$ = 84	M1 A1	for 180 – 192 <i>p</i>
	Mid-point (5, 9) 9 = 2(5)-1 Alternative Method: Tangent equation $y = 2x - 1$ Equation of line joining (-2, 16) and (12, 2) y = -x + 14 Solve simultaneously $x = 5$, $y = 9$ Mid-point (5, 9) $(2 + px)^6 = 64 + 192 px + 240 p^2 x^2 \dots$ $240 p^2 = 60$ $p = \frac{1}{2}$ $(3-x)(64 + 192 px + 240 p^2 x^2 \dots)$ Coefficient of x^2 is $180 - 192 p$	Mid-point (5, 9) $9 = 2(5)-1$ B1 Alternative Method: Tangent equation $y = 2x-1$ Equation of line joining (-2, 16) and (12, 2) $y = -x + 14$ Solve simultaneously $x = 5, y = 9$ B1 Mid-point (5, 9) B1 $(2 + px)^6 = 64 + 192 px + 240 p^2 x^2 \dots$ B1 $240 p^2 = 60$ $p = \frac{1}{2}$ M1 $(3-x)(64 + 192 px + 240 p^2 x^2 \dots)$ B1 ft Coefficient of x^2 is $180 - 192 p$ M1

			3, 32
Page 4	Mark Scheme	Syllabus	P. Jan
	Cambridge O Level – October/November 2014	4037	12 Physical
	-		

			70
7 (i)	$\mathbf{A}^{-1} = \frac{1}{5ab} \begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$	B1, B1	B1 for $\frac{1}{5ab}$, B1 for $\begin{pmatrix} b & -2b \\ a & 3a \end{pmatrix}$
(ii)	$\mathbf{X} = \mathbf{B}\mathbf{A}^{-1}$	M1	for post-multiplication by inverse matrix
	$= \begin{pmatrix} -a & b \\ 2a & 2b \end{pmatrix} \begin{pmatrix} \frac{1}{5a} & -\frac{2}{5a} \\ \frac{1}{5b} & \frac{3}{5b} \end{pmatrix}$	DM1	for correct attempt at matrix multiplication, needs at least one term correct for their BA ⁻¹ (allow unsimplified)
	$= \begin{pmatrix} 0 & 1 \\ \frac{4}{5} & \frac{2}{5} \end{pmatrix}$	A1 A1	for each correct pair of elements, must be simplified
8 (i)	$\overrightarrow{AB} = \begin{pmatrix} 12\\16 \end{pmatrix}, \text{ at } P, \ x = -2 + \frac{1}{4}(12)$ so at $P, x = 1$	В1	for convincing argument for $x = 1$
	$y = 3 + \frac{1}{4}(16), y = 7$	B1	for $y = 7$
(ii)	Gradient of $AB = \frac{16}{12}$, so perp gradient = $-\frac{3}{4}$	M1	for finding gradient of perpendicular
	Perp line: $y - 7 = -\frac{3}{4}(x - 1)$	M1	for equation of perpendicular through their <i>P</i>
	(3x+4y=31)	A1	Allow unsimplified
(iii)	$Q\left(0,\frac{31}{4}\right)$	B1 ft	ft on their perpendicular line, may be implied
	4 /	M1	for any valid method of finding the area of the correct triangle, allow use of <i>their Q</i> ; must be in the form
	Area $AQB = 12.5$	A1	(0,q).

			my n
Page 5	Mark Scheme	Syllabus	P. My
	Cambridge O Level – October/November 2014	4037	12 4/750

		1							- 1		
9	(i)	$\log y$	= log	ga + x le	$\log b$					B 1	for the statement, may be seen or
			x	2	2.5	3	3.5	4			implied in later work,
		1;	lg y	1.27	1.47	1.67	1.87	2.07			
			lny	2 2.93	2.5	3 3.84	3.5 4.31	4 4.76			
			Пу	2.73	3.37	3.01	1.51	1.70			
		log	ogy							M1	for attempt to draw graph of <i>x</i> against log <i>y</i>
								x		A2,1,0	-1 each error in points plotted
	(ii)			ent = $\log b$ 0.4 or $\ln b = 0.92$			DM1	for attempt to find gradient and equate it to $\log b$, dependent on M1			
		b=2.	.5 (all	low 2.4	to 2.6))				A1	in (i)
		Interce lg a =			a = 1.10					DM1	for attempt to equate <i>y</i> -intercept to log <i>a</i> or use <i>their</i> equation with <i>their</i> gradient and a point on the
		a=3	(allo	w 2.8 t	o 3.2)					A1	line, dependent on M1 in (i)
		Simul	ltanec		ations		used pr aight lir	rovided ne are		DM1	for a pair of equations using points on the line, dependent on M1 in (i) for solution of these equations,
			-	w 2.8 to low 2.4	o 3.2) to 2.6)					A1 A1	dependent on M1 in (i) A1 for each

			- n 22
Page 6	Mark Scheme	Syllabus	P. O Ox
	Cambridge O Level – October/November 2014	4037	12 8/1/20 1/3
	-		'O'C'

	1		
10 (a) (i)	360	B1	
(ii)	60	B1	
(iii)	36	B1	
(b) (i)	${}^8C_5 \times {}^{12}C_5$	B1, B1	B1 for each, allow unevaluated with no extra terms
	$56 \times 792 = 44352$	B1	Final answer must be evaluated and from multiplication
(ii)	4 places are accounted for Gender no longer 'important'	M1	for realising that 4 places are accounted or that gender is no longer important
	Need ${}^{16}C_6 = 8008$	A1	for 8008
	Alternative Method		
	$\begin{pmatrix} {}^{6}C_{6} \times {}^{10}C_{0} + {}^{6}C_{5} \times {}^{10}C_{1} \dots {}^{6}C_{0} \times {}^{10}C_{6} \end{pmatrix}$	M1	for at least 5 of the 7 cases, allow
		A1	unsimplified
	1+60+675+2400+3150+1512+210=8008	AI	
11 (a)	$2\cos 3x - \frac{\cos 3x}{\sin 3x} = 0$	M1	for use of $\cot 3x = \frac{\cos 3x}{\sin 3x}$, may be
	$\cos 3x \left(2 - \frac{1}{\sin 3x}\right) = 0$		implied
	Leading to $\cos 3x = 0$, $3x = 90^{\circ}$, 270°	DM1	for attempt to solve $\cos 3x = 0$ correctly from correct factorisation
	$x = 30^{\circ}, 90^{\circ}$	A1	to obtain <i>x</i> A1 for both, no excess solutions in the range
	and $\sin 3x = \frac{1}{2}$, $3x = 30^{\circ}$, 150°	DM1	for attempt to solve $\sin 3x = \frac{1}{2}$
(b)	$x = 10^{\circ}, 50^{\circ}$	A1	correctly to obtain <i>x</i> A1 for both, condone excess solutions
(~)	$\cos\left(y + \frac{\pi}{2}\right) = -\frac{1}{2}$	M1	for dealing with $\sec\left(y + \frac{\pi}{2}\right)$
	$y + \frac{\pi}{2} = \frac{2\pi}{3}, \frac{4\pi}{3}$		correctly
		DM1	for correct order of operations, must not mix degrees and radians
	so $y = \frac{\pi}{6}, \frac{5\pi}{6}$ (0.524, 2.62)	A1, A1	must not mix degrees and radians

Page 7 Mark Scheme Syllabus P. The Syllabus P.				mn n
Cambridge O Level – October/November 2014 4037 12 %	Page 7	Mark Scheme	Syllabus	P. My
Cumbridge of Level Cottober/November 2014 4007 12		Cambridge O Level – October/November 2014	4037	12 7/2

12 (i)	$\overrightarrow{AQ} = \lambda \mathbf{b} - \mathbf{a}$	B1	
(ii)	$\overline{BP} = \mu \mathbf{a} - \mathbf{b}$	B1	
(iii)	$\overrightarrow{OR} = \mathbf{a} + \frac{1}{3}(\lambda \mathbf{b} - \mathbf{a}) \text{ or } \lambda \mathbf{b} - \frac{2}{3}(\lambda \mathbf{b} - \mathbf{a})$	M1	for $\mathbf{a} + \frac{1}{3}$ their (i)
	$=\frac{2}{3}\mathbf{a}+\frac{1}{3}\lambda\mathbf{b}$	A1	Allow unsimplified
(iv)	$\overrightarrow{OR} = \mathbf{b} + \frac{7}{8} (\mu \mathbf{a} - \mathbf{b}) \text{ or } \mu \mathbf{a} - \frac{1}{8} (\mu \mathbf{a} - \mathbf{b})$ $= \frac{1}{8} \mathbf{b} + \frac{7}{8} \mu \mathbf{a}$	M1	for $\mathbf{b} + \frac{7}{8}$ their (ii)
	$=\frac{1}{8}\mathbf{b}+\frac{7}{8}\mu\mathbf{a}$	A1	Allow unsimplified
	$\frac{2}{3}\mathbf{a} + \frac{1}{3}\lambda\mathbf{b} = \frac{1}{8}\mathbf{b} + \frac{7}{8}\mu\mathbf{a}$	M1	for equating (iii) and (iv) and then
	$\frac{2}{3} = \frac{7}{8}\mu, \mu = \frac{16}{21}$ Allow 0.762	A1	equating like vectors
	$\frac{1}{3}\lambda = \frac{1}{8}, \lambda = \frac{3}{8} \text{Allow 0.375}$	A1	