

MARK SCHEME for the October/November 2013 series

4037 ADDITIONAL MATHEMATICS

4037/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			www.m. m.
Page 2	Mark Scheme	Syllabus	Pap. In Ma
	GCE O LEVEL – October/November 2013	4037	22 the

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

				hree term	
Page 3	Mark Scheme GCE O LEVEL – October/Nove	mber 2013	Syllabus 4037	Pap nath	
1 (<i>x</i>	(x-1)	M1	Attempt to solve a t quadratic	hree term	
Cr	tical values –6 and 1	A1	quadratic		
- (5 < x < 1	A1 [3]	Allow $x > -6$ AND $x < 1$ but not OR or a comma. Mark final answer.		
2 (4-	$(\sqrt{5} - 2)^2 = 80 - 16\sqrt{5} + 4$	M1	Attempt to expand,		
М	It is and bottom by $\sqrt{5} + 1$	M1	must be in the form Must be attempt to a bottom.		
17	$\sqrt{5} + 1$	A1 A1 [4]	Allow A1 for $\frac{68\sqrt{3}}{6}$	$\frac{5}{2} + 4$	
OI					
(4-	$ \sqrt{5} - 2 \Big)^2 = 80 - 16\sqrt{5} + 4 \overline{5} - 1 \Big) \Big(p\sqrt{5} + q \Big) = 5p - q + \sqrt{5}(q - p) $	M1			
		M1	Must set to a usin a	f	
	Leading to $5p - q = 84, q - p = -16$ p = 17 $q = 1$		Must get to a pair of equations for this m		
3 (i) $\frac{dy}{dt}$	$k = k \left(\frac{1}{4}x - 5\right)^7$	M1			
d <i>k</i> k =		A1			
		[2]			
(ii) Us	e $\partial y = \frac{dy}{dx} \times \partial x$ with $x = 12$ and $\partial x = p$	M1	\checkmark on <i>k</i> needs both N	1 marks	
-2:	56 <i>p</i>	A1√ [^] [2]	$\sqrt[n]{}$ only for $-128kp$ a evaluated	nd must be	
4 (i) 10		B1			
(ii) –5		[1] B1 [1]	Not $\log_p 1-5$		
(iii) log	(iii) $\log_p XY = \log_p X + \log_p Y = 7$		Or $\log_{XY} p = \frac{1}{\log_p 2}$	XY	
			Do not allow just lo		
$\frac{1}{7}$		B1√ [^] [2]	\checkmark on $\frac{1}{\log_p XY}$		

	Page 4	4	Mar	rk Scheme		Syllabus	Pap
	V		CE O LEVEL – O	October/Nove	ember 2013	4037	22 ath
							Mun My Pap. Mynath 22
		x - 4y = 5			B1		
		2x + 2y = 5	oe inear simultaneou	is aquations	B1 M1	Each in two variable	a and not
		Solve men i	inear sinuitaneou	is equations	IVI I	quadratic as far as x	
		x = 3 or $y = -0.5$			A1,A1√ [≜] [5]	1	5
		OR from log	g		B1		
		0.602x - 2.4			B1		
			954y = 2.386				
		OR from $\ln 1.28$ from $\ln 5.5$	45 (021		B1		
		1.386x - 5.5	43y = 6.931 197y = 5.493		B1		
			A1 \checkmark follows as b	efore			
(a) ((a) (i)	-8 or 20			B1	± 40 implies $\pm 2 \times 2$	0 or +160
		$-160(x^3)$ is	W		B1	hence B1 OK if seen in expans	sion
	(ii) $60(x^2)$			[2] B1	Can be implied		
		(i) $+\frac{1}{2}$ (the	ir 60)		M1		
		-					
		$-130(x^3)$			A1 [3]		
	(b)	$16x^2 + 32x - 32$	$+24+\frac{8}{x}+\frac{1}{x^2}$ oe		B3,2,1,0	Terms must be evalu B2 for 4 terms corre	
					[3]	B1 for 2 or 3 terms of ISW once expansion	correct.
	(i)	$l = \frac{3500}{r^2}$			B1	allow $lx^2 = 3500$	
		$L = 3 \times 4x + $	2x + 2l		B1	RHS 3 terms e.g. 12	$x + 2x + 2\left(\frac{3500}{2}\right)$
						or better	$\begin{pmatrix} x^2 \end{pmatrix}$
		Substitute fo	or <i>l</i> and correctly 1	reach			
		$L = 14x + \frac{70}{2}$	•		DD1	Dependent on both p	revious R mortes
		L = 14x +	$\overline{x^2}$		DB1ag [3]	Dependent on both p	DIEVIOUS D IIIdIKS
	(ii)	$\frac{\mathrm{d}L}{\mathrm{d}x} = 14 - \frac{14}{3}$	$\frac{4000}{r^3}$		M1A1	M1 either power red	
			х			A1 both terms correct	et
		Equate $\frac{dL}{dx}$	to 0 and solve		DM1	Must get $x^n =$	
		x = 10 $L = 210$			A1	Both values	
			$\frac{0}{2}$ and minimum	stated	B1	Or use of gradient ei	ther side of
		$\frac{1}{\mathrm{d}x^2} = \frac{1}{x^4}$	– and minimum	stated	[5]	turning point.	

	Page	9 5	5 Mark Scheme				Syllabus	Pap
_			GCE O			ovember 2013	4037	22 ath
3	(i)	x^2				B1 [1]	Implied by axes or May be seen in (ii)	Pap Man Agent Agen
	(ii)	Plot	$\frac{y}{x}$ against x^2	with line	ar scales		Must be linear scal	
		x^2	4 16	36	64	B1	At least 3 correct points	oints plotted and
		$\frac{y}{x}$	4.8 9.6	17.5	29	B1 [2]	Line must be ruled least 2 correct point	
	(iii)		s gradient (0.4 ± 0.02	4)		M1	Condone use of cortable/graph to find g	
			3.2 ± 0.4			A1 B1	equation. Values rea must be correct.	
	(iv)	Read	$1 \frac{y}{x} = 12.5$			[3] M1	Obtaining $(x^2) = 22$	to 24 from graph
		or su	bstitute in for	mula		178.8	As far as $x^2 = +ve$	constant
		4.8				A1	4.7 to 4.9 ignore	e –4.8 or 0
						[2]		
)			nod A			M1		
			es components $\sin \alpha = 40$	3		A1 A1		
			$\cos \alpha + 1.8) =$	70		AI M1A1		
		-	$\cos \alpha = 48.4$			DM1		
			e for <i>v</i> or α			A1		
		$\alpha = 3$				A1	Allow 0.691 radians	s
		<i>v</i> = 5	.23			[8]		
		Meth						
			70	D a y	→ 40	D1		
			$.8 \times 12 = 21.6$ 70 - 21.6 = 48			B1 B1		
			$= 40^2 + 48.4^2$)	M1		
		D = 0		= 3772.00)	MI A1		
		V = -						
			12			DM1		
		V = 5				A1	5.23 or better	
		tan a	$\alpha = \frac{40}{48.4}$			M1		
		$\alpha = \hat{c}$	48.4 39.6°			A1	Allow 0.691 radian	
		u _	17.0			AI [8]	Allow 0.071 Iauian	IS

Page 6	Mark Scheme	har 2042	Syllabus	Pap
	GCE O LEVEL – October/Novem	ber 2013	4037	22 .75
Meth —	hod C v V V 401.8 70			Man My Pap Mainsing
	$\sqrt{40^2 + 70^2} (= 80.6)$	B 1		
v = -	$\frac{\sqrt{40^2 + 70^2}}{12} (= 6.72)$	B1		
	$\delta = \frac{4}{7} \rightarrow (\delta = 29.74) \text{ oe}$	B1	Or $\tan(90-\delta) = \frac{7}{4}$	
	$=1.8^{2} + 6.72^{2} - 2 \times 1.8 \times 6.72 \cos 29.74$	M1		
$V = \sin \mu$	$\frac{\beta}{8} = \frac{\sin 29.74}{5}.23$	A1 M1		
$\frac{1}{1} \cdot 6 - \frac{5}{5} \cdot 23$ $\beta = 9.8(3) \text{ or } 9.8(2)$		A1	Allow 0.172 radians	
	$29.74 + \beta = 39.6$	A1 [8]	Allow 0.691 radians	
$z = x$ $x = 1$ $\tan a$ $D^{2} =$	hod D z $D\sqrt{40^2 + 70^2} (= 80.6)1.8 \times 12 = 21.6\delta = \frac{4}{7} \rightarrow (\delta = 29.74) oe= 21.6^2 + 80.6^2 - 2.21.6.80.6 \cos 29.74(62.8/12) = 5.23$	B1 B1 M1 A1	This method has extr this point the M mark equation in D but the value of V .	is for an
$\frac{\sin \mu}{21}$	$\frac{\beta}{6}.6 = \frac{\sin 29.74}{62}.8$			
ß —	9.8(3) or 9.8(2)	A1	Allow 0.172 radians	

Page 7	Mark Scheme GCE O LEVEL – October/Novem	Mark Scheme GCE O LEVEL – October/November 2013		Pap Unaths
1 1 1 1	$AB^{2} = 12^{2} + 12^{2} - 2 \times 12 \times 12 \times \cos 1.4$ 15.4 to 15.5 $\theta = 2\pi - 1.4 (= 4.88)$ Use $s = r\theta (= 58.6)$ 74.1	M1 A1 B1 M1 A1 [5]	$AB = 2 \times 12 \sin 0.7$ May be implied May be implied 12×4.9 or better of	Pap Nrymainscr
2	(Sector) $\frac{1}{2} \times 12^2 \times (2\pi - 1.4) (= 352)$ or $\pi \times 12^2 - \frac{1}{2} \times 12^2 \times 1.4$	M1	May be implied .	
A	Triangle) = $\frac{1}{2} \times 12 \times 12 \times \sin 1.4 (= 70.9 \text{ or } 71)$ Area of major sector + Area of triangle 422 or 423	M1 M1 A1 [4]	May be implied	
11 (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{1}{3} \mathrm{e}^{\frac{1}{3}x}$	B1		
7	$m = \frac{1}{3}e^{3}$ $y - e^{3} = \frac{1}{3}e^{3}(x - 9)$ At $Q y = 0, x = 6$	M1 DM1 A1 [4]	For insertion of $x = 9$ their $\frac{dy}{dx}$. 6.7 or better Using their evaluated y = 6.7x - 40.2 or b Accept value that root	er if correct. d <i>m</i> to find eqn better if correct.
U 2 A	Area triangle 1.5e ³ or 30.1 $\int e^{\frac{1}{3}x} dx = 3e^{\frac{1}{3}x} oe$ Uses limits of 0 and 9 in integrated function. 3e ³ - 3 or 57.3 Area under curve subtract area of triangle	B1 B1 M1 A1 M1	± must see both val incorrect answer	
1	$1.5e^3 - 3 \text{ or } 27.1$	A1 [6]	Condone 27.2 if obta 57.3 – 30.1.	ained from

					MMM. My Marins Pap. My Marins 22 Riftscioud.com
	Page 8	Mark Scheme		Syllabus	Pap
		GCE O LEVEL – October/Nove	ember 2013	4037	22 35
					·/ou
12	(a) co	$\operatorname{osec} x = \frac{1}{\sin x}$ inserted into equation	B1		to.com
		$\ln x = -\frac{2}{7}$	DB1		
		54.1 14.1	B1 B1√ [∧]	One correct value. \checkmark on 180 + (164.1) M	Aust come from
			[4]	tanx = Condone164 and 34 Deduct 1 mark for e	
		(y-1) = 0.79or 2.34 nd y using radians	B1 M1	Allow 0.8, 2.3 or 45 Add 1 then divide by angle	
		898 (or 0.9 or 0.90) 67, 4.04 and 4.81(45)	A1 A1 A1 [5]	One correct value Another correct valu Final two values Deduct 1 mark for e	