

MARK SCHEME for the October/November 2013 series

4037 ADDITIONAL MATHEMATICS

4037/12

Paper 1, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2013 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			www.m. m
Page 2	Mark Scheme	Syllabus	Pap
	GCE O LEVEL – October/November 2013	4037	12 The

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more 'method' steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √^h implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously 'correct' answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

						www. w.	
	Page 3	Mark Scheme		0.4.0	Syllabus	Pap. Ynav	the state of the s
		GCE O LEVEL – October/N	lovember 2	013	4037	12 '75C/0.	
1	a = 3, b = 2,	<i>c</i> = 1	B1, B1, B1 [3]	B1 for	each	Munu Munath Pap Ninathscloud	ld.com
2	Using $b^2 - 4ac$ $4k^2 + 8k -$	$y, 9 = 4 (k+1)^2 5 = 0$	M1 DM1		any use of $b^2 - 4ac$ for solution of their		
	$k=-\frac{5}{2},$	$\left(\frac{1}{2}\right)$	A1	A1 for	critical value(s), $\frac{1}{2}$	not necessary	
	To be below th	the x-axis $k < -\frac{5}{2}$	A1 [4]	A1 for	$k < -\frac{5}{2}$ only		
	Or: $\frac{dy}{dx} = 2(x)$ when $\frac{dy}{dx} = 0$, z	$x = \frac{3}{2(k+1)}$					
	To lie under th	-					
	. ($\frac{9}{1)^2} - \frac{9}{2(k+1)} + (k+1) < 0$ $4(k+1)^2 \text{ or equivalent}$ vious method	M1	M1 for	a complete method	l to this point.	

Page 4	Mark Scher	me			Syllabus	Pap	
	GCE O LEVEL – October				4037	12 aths	
	$\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} + \frac{(1+\sin\theta)^2 + \cos^2\theta}{\cos\theta(1+\sin\theta)}$ $= \frac{1+2\sin\theta + \sin^2\theta + \cos^2\theta}{\cos\theta(1+\sin\theta)}$				Www.mym.SyllabusPap.013403712M1 for dealing with the fractions, denominator must be correct, be generous with numerator		
$=\frac{2+2}{\cos\theta(1)}$	$\frac{\sin\theta}{+\sin\theta}$	DM1		$\cos^2 \theta$	expansion and use $+\sin^2\theta = 1$		
$=\frac{2(1+)}{\cos\theta(1)}$ $=2\sec\theta$	$\frac{\sin(\theta)}{+\sin(\theta)}$	DM1 A1	[4]		attempt to factoris obtaining final ans		
$=\frac{(\sec\theta + 1)}{\sec\theta}$ $=\frac{\sec^2\theta + 1}{\sec^2\theta + 1}$	$\theta + \frac{1}{\sec \theta + \tan \theta}$ $\frac{\tan \theta}{\tan \theta}^{2} + \frac{1}{\tan \theta}$ $\frac{2 \sec \theta \tan \theta + \tan^{2} \theta + 1}{\sec \theta + \tan \theta}$	M1		M1 for	dealing with the fi	ractions	
$=\frac{2 \sec \theta(s)}{\sec \theta(s)}$	$\frac{+2 \sec \theta \tan \theta}{\theta + \tan \theta}$ $\frac{ec \theta + \tan \theta}{\theta + \tan \theta}$	DM1 DM1		$\tan^2 \theta$ - DM1 fo	expansion and use +1 = $\sec^2 \theta$ or attempt to factor	ise	
$= 2 \sec \theta$ 4 (i) n (A) = 3		A1 B1	[1]	If eleme correct n(A) =	obtaining final ans ents listed for (i), t elements to get B1 3. If they are not 1 given then B1.	hen they must be leading to	
(ii) n (<i>B</i>) = 4		B1	[1]	correct	ents listed for (ii), elements leading t hey are not listed a hen B1.	o n $(B) = 4$ to get	
(iii) $A \cup B =$	{60°, 240°, 300, 420°, 600°}	$\sqrt{B1}$	[1]		through on any se not allow any repo		
(iv) $A \cap B =$	{60°, 420°}	√B 1	[1]	Follow (ii) .	through on any se	ts listed in (i) and	

						www.m	
	Page 5	Mark Scheme	e		Syllabus	Pap	Mar St
		GCE O LEVEL – October/N	lovember 2	013	4037	12 413	No. No.
				1			
5	(i) $9x - \frac{1}{3}\cos(\frac{1}{3})$	s 3x (+c)	B1, B1, B1		9x, B1 for $\frac{1}{3}$ or cos	Pap. nymain 12	st.com
			[3]	B1 for	$-\frac{1}{3}\cos 3x$		
				Condo	ne omission of $+ c$		
	(ii) $\int 9x - \frac{1}{3} \cos \theta$	$\left[\cos 3x \right]_{\frac{\pi}{9}}^{\pi}$					
		$\frac{1}{3}\cos 3\pi \right) - \left(\pi - \frac{1}{3}\cos \frac{\pi}{3}\right)$	M1	M1 for to (i)	correct use of limit	ts in their answer	
	$=8\pi+\frac{1}{2}$		A1, A1 [3]	A1 for	each term		
6	$f\left(\frac{1}{2}\right) = \frac{a}{8} + 1 + \frac{a}{8} + 1 + \frac{a}{8} + \frac$	$+\frac{b}{2}-2$	M1	M1 for	substitution of $x =$	$=\frac{1}{2}$ into f(x)	
	leading to $a + a$	4b - 8 = 0	A1	A1 for	correct equation in	any form	
	f(2) = 2f(-1)		M1	x = -1	attempt to substitutint $f(x)$ and use $f(x) = f(-1)$		
	8a + 16 + 2b -	-2 = 2(-a + 4 - b - 2)	A1		a correct equation i	in any form	
	leading to 10a	a + 4b + 10 = 0 or equivalent					
	$\therefore a = -2, b =$	$=\frac{5}{2}$	DM1 A1 [6]	attemp obtain	on both previous M t to solve simultane either <i>a</i> or <i>b</i> both correct	· · · · · · · · · · · · · · · · · · ·	

										Pap. Nymath		
Pa	nge 6		Mark Scheme GCE O LEVEL – October/N						Syllabus	Pap	Math S	
			GCE	O LEVE	L – October	Nover	nber 2	013	4037	12 0	SC/C	
7 (a)	(i)	360				B1	[1]				Ud.com	
	(ii)	120				B1	[1]					
(b)	(i) (ii)	924 28				B1 B1	[1]					
	(II)	20				DI	[1]					
			(-	$({}^4C_3) - ({}^8C_3) = ({}^8C_3) - ({}^8C_3) = ({}^$,	M1			r 3 terms, at least 2 t in terms of <i>C</i> nota			
	924 - 224 - 28 = 672						[3]		any pair (must be final answer	evaluated)		
Or	Or: 4M 2W ${}^{8}C_{4} \times {}^{4}C_{2} = 420$				M1		M1 for 3 terms, at least 2 of which must be correct in terms of <i>C</i> notation or evaluated.					
			$C_5 \times^4 C_1$ C_6			A1			any pair (must be			
		Т	otal	= 672		A1		A1 for	final answer			
8 (i)						B1		B1 for	correct shape			
						B1		B1 for	(-3, 0) or -3 seen	on graph		
				1		B 1		B1 for	(2, 0) or 2 seen on	graph		
	-	, Y				B 1		B1 for	(0, 6) or 6 seen on	graph or in a table	;	
			1	,I	I I I I I I I I I I I I I I I I I I I		[4]					
(ii)	$\left(-\frac{1}{2}\right)$	$(\frac{25}{4})$				B1,	B1 [2]	B1 for	each			
(iii)	k > -	$\frac{25}{4}$ or	$\frac{25}{4} < k$	(≤14)		B1	[1]					

Page 7	Mark Schen GCE O LEVEL – October/	Syllabus 4037	MMM. My Markets Pap. Markschoud. 12 a correct product					
9 (a) $12x^2 \ln(2$	$(x+1) + 4x^3 \left(\frac{2}{2x+1}\right)$	M1 A2, 1, 0 [3]	M1 for differentiation of a correct product -1 for each error					
(b) (i) $\frac{dy}{dx}$	$\frac{1}{2} = \frac{(x+2)^{\frac{1}{2}} 2 - 2x(x+2)^{-\frac{1}{2}} \frac{1}{2}}{x+2}$	M1, A1		differentiation of a ng $(x+2)^{\frac{1}{2}}$	a quotient			
	$=\frac{(x+2)^{-\frac{1}{2}}}{(x+2)}(2(x+2)-x)$	DM1	A1 all o DM1 fo					
= -	$\frac{x+4}{(x+2)^{\frac{3}{2}}}$	A1 [4]	A1 for correct simplification to obtain the given answer					
Or: $\frac{\mathrm{d}y}{\mathrm{d}x} = 2x\left($	$\left(x+2\right)^{-\frac{3}{2}}+\left(x+2\right)^{-\frac{1}{2}}(2)$	M1, A1		differentiation of a ng $(x+2)^{\frac{1}{2}}$	a product			
$=\frac{x}{x}$	$(+2)^{-\frac{3}{2}}(2(x+2)-x) + \frac{4}{(x+2)^{\frac{3}{2}}}$	DM1 A1	DM1 fo	correct unsimplifie or attempt to simpl correct simplificat inswer	ify			
(ii) $\frac{10x}{\sqrt{x+2}}$ ((+c)	M1,A1 [2]	M1 for $\frac{1}{5} \times \frac{2x}{\sqrt{x+2}}$ or $5 \times \frac{2x}{\sqrt{x+2}}$ A1 correct only, allow unsimplified. Condone omission of $+c$					
(iii) $\left[\frac{10x}{\sqrt{x+2}}\right]$	$\int_{2}^{7} = \frac{70}{3} - \frac{20}{2}$	M1		correct application to (b)(ii)	n of limits in their			
	$=\frac{40}{3}$	A1 [2]						

						Mun My Pap Minainsi 12		
Pa	age 8	Mark Schem GCE O LEVEL – October/N		013	Syllabus 4037	Pap Inath	Maths .	
							36,	
10 (i)	$\sqrt{20}$ or 4.	47	B1 [1]				VO.COM	
(ii)	Grad AB =	$=\frac{1}{2}, \perp \text{grad} = -2$	M1	M1 for	attempt at a perp g			
	$\pm \text{ line } y - 4 = -2(x - 1)$				attempt at straight e perpendicular and			
	(y = -2x +	- 6)	[3]		ow unsimplified			
(iii)	$(x-1)^2 +$	$C(x, y)$ and $BC^{2} = 20$ $(y-4)^{2} = 20$ or $C(x, y)$ and $AC^{2} = 40$	M1	M1 for attempt to obtain relationship using an appropriate length and the point $(1, 4)$ or (-3, 2)				
	$(x+3)^2 +$	$(y-2)^2 = 40$	A1		a correct equation			
	Need inter	rsection with $y = -2x + 6$,	DM1	and ob	or attempt to solve tain a quadratic equ riable only	•		
	leads to 5: $5y^2 - 40y$	$x^2 - 10x - 15 = 0 \text{ or} \\ -= 0$						
	giving $x =$ and $y =$		DM1 A1, A1 [6]		attempt to solve que each 'pair'	uadratic		
	Or , using v	ector approach:						
	$\overrightarrow{AB} = \begin{pmatrix} 4\\2 \end{pmatrix}$		B1	May be implied				
		$\begin{pmatrix} -2\\4 \end{pmatrix} = \begin{pmatrix} -1\\8 \end{pmatrix}$	M1 A1, A1		correct approach each element corre	ect		
	$\overrightarrow{\text{OC}} = \begin{pmatrix} 1\\ 4 \end{pmatrix} +$	$\begin{pmatrix} 2 \\ -4 \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \end{pmatrix}$	A1,A1	A1 for	each element corre	ect		

					Man Markson			
Page 9	Mark Schem	-		Syllabus	Pap	ary a		
	GCE O LEVEL – October/N	lovember	2013	4037	12 ⁴ /5	S.Q		
					-0/	o_{l}		
11 (a) (i) $\begin{pmatrix} 4 \\ 4 \end{pmatrix}$	$\begin{pmatrix} 3\\3 \end{pmatrix}$	B1 [1]				YO.COM		
(ii) A ²	$\mathbf{F} = \begin{pmatrix} 16 & 9\\ 12 & 13 \end{pmatrix}$	B1, B1 [2]		any 2 correct elem all correct	ents			
	(iii) B is the inverse matrix of \mathbf{A}^2 = $\frac{1}{100} \begin{pmatrix} 13 & -9 \\ -12 & 16 \end{pmatrix}$			Follow through on their A^2				
(b) det $C = x($ = 2 y	(b) det $\mathbf{C} = x(x-1) - (-1)(x^2 - x + 1)$ = $2x^2 - 2x + 1$			M1 for attempt to obtain det C A1 for this correct quadratic expression from a correct det C				
$b^2 - 4ac <$	< 0, 4 – 8 < 0	DM1	solve u comple	For use of discrimination of the formula, of the formula, of the square in order the square in order real roots.	or attempt to			
No real so	plutions (so det $\mathbf{C} \neq 0$)	A1 [4]		correct reasoning or real roots.	or statement that			

									hun .	4
	Page 10 Mark Schem							Syllabus	Pap	My are
				GCE O LEVEL – October/N	loven	nber 2	013	4037	12 41	S. S. S.
12	(a)	(i)	Mir	10) = 299, f(8) = 191 n point at $(0, -1)$ or when $y = -1$ ange $-1 \le y \le 299$	M1 B1 A1	[3]	x = 8, 1 B1 Ma be seen	$\frac{w_{M}}{Pap}$ $\frac{12}{12}$ er $x = -10$ or ram inal answer, may t allow x	cloud.com	
		(ii)	$x \ge$	0 or equivalent	B1	[1]	Allow one-on Assum necess			
	(b)	(i)		$(x) = \ln\left(\frac{x+2}{4}\right)$	M1		M1 for inverse approp			
			or	$\frac{\lg\left(\frac{x+2}{4}\right)}{\lg e}$	A1	[2]	A1 mu	st be in terms of x		
		(ii)	gh(.	f(x) = g(1n5x) = $4e^{1n5x} - 2$	M1 A1			r correct order	$4e^{1n5x} - 2$	
			20 <i>x</i>	$x - 2 = 18, \ x = 1$	A1	[3]	A1 for workin	correct solution from	m correct	
				$h(x) = g^{-1}(18)$ n5x = 1n5	M1 A1			r correct order correct equation		
			lead	ding to $x = 1$	A1		A1 for worki	correct solution fro ng	m correct	