

MARK SCHEME for the October/November 2012 series

4037 ADDITIONAL MATHEMATICS

4037/23

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			mun n. m
Page 2	Mark Scheme	Syllabus	Pap
	GCE O LEVEL – October/November 2012	4037	23

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √ implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

			mm m m
Page 3	Mark Scheme	Syllabus	Pap. Thymaru
	GCE O LEVEL – October/November 2012	4037	
The follow	ring abbreviations may be used in a mark scheme or u	sed on the scrip	ts: 23 Tiscloud.con
AG	Answer Given on the question paper (so extra check	ina is needed to	ensure that

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{$ ". marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

			MMM. M. M.
Page 4	Mark Scheme	Syllabus	Pap. Ingu Sth
	GCE O LEVEL – October/November 2012	4037	23 4th 500

		GCE O LEVEL – Octobe	r/Novemb	er 2012	4037	23 dillo
						23 athscioud.com
1	1.2 $5r + 7 = -13$ or $25r^{2}$	$2^{2} + 70x + 40 - 160$	B1	correct posi	tive value	COM
	$5x + 7 = -13 \text{ or } 25x^2 + 70x + 49 = 169$ 5(5x - 6)(x + 4) = 0 -4			correct method to find second value correct final answer		
2	(i) $\frac{1}{6 \times 7 - 8 \times 4} \begin{pmatrix} 6 \\ - \end{pmatrix}$	$\begin{pmatrix} 5 & -8 \\ 4 & 7 \end{pmatrix}$	B1B1 [2]	B1 for each part of the inverse		
	(ii) $\binom{x}{y} = \frac{1}{10} \binom{6}{-4}$	$\begin{pmatrix} -8\\7 \end{pmatrix} \begin{pmatrix} 39\\23 \end{pmatrix}$	M1	pre-multiply $\begin{pmatrix} 39\\23 \end{pmatrix}$ by their inverse		
	$= \begin{pmatrix} 5\\0.5 \end{pmatrix}$		A1 [2]	correct answ	vers, correctly asso	ciated
3	$(3\sqrt{3} - 1)^2 = 27 - 6$		M1	multiplicati	on, including $a\sqrt{3}$	$\times b\sqrt{3}=3ab$
	or $(3\sqrt{3} - 1)(2\sqrt{3})$	$(+3) = 18 + 7\sqrt{3} - 3$	A1	a correct ex	pansion	
	$\times \frac{2\sqrt{3}+3}{2\sqrt{3}+3}$ or $28-6\sqrt{3}$	5	M1	valid metho	od to obtain a value	for <i>a</i> or <i>b</i>
	$\frac{38\sqrt{3}+48}{3}$ or $a = 38$, <i>b</i> = 48	A1 [4]	correct answ	wers	

					Munu Mu Mu Mu Pap. Mathsciol	
Page 5	Mark Sche			Syllabus	Papythay	the second
	GCE O LEVEL – Octobe	r/Novemb	er 2012	4037	23	
		1				10. _{CC}
$\overrightarrow{XZ} = \begin{pmatrix} 16\\ 20 \end{pmatrix}$		B1	correct vect	or for \overrightarrow{XZ}		n,
$\overrightarrow{OY} = \begin{pmatrix} 4\\ -27 \end{pmatrix} + \frac{3}{4} \begin{pmatrix} 1\\ 2 \end{pmatrix}$	$\binom{6}{0} \operatorname{or} \binom{20}{-7} + \frac{1}{4} \binom{-16}{-20}$	M1	valid metho	d for \overrightarrow{OY}		
$=\begin{pmatrix}16\\-12\end{pmatrix}$		A1	correct vector for <i>OY</i>			
$\left \overrightarrow{OY}\right = \sqrt{16^2 + \left(-12\right)}$	\overline{r}^2 oe	M1	uses Pythagoras to find length of \overrightarrow{OY}			
unit vector in directi	on of $\overrightarrow{OY} = \begin{pmatrix} 0.8 \\ -0.6 \end{pmatrix}$ oe	A1 [5]	correct vector expression			
OR $\overrightarrow{OY} - \overrightarrow{OX} = 3\overrightarrow{OX}$		B1	correct vect	or equation		
$4\overrightarrow{OY} = \begin{pmatrix} 4\\ -27 \end{pmatrix} +$	$-3\left(\begin{array}{c}20\\-7\end{array}\right)=\left(\begin{array}{c}64\\-48\end{array}\right)$	M1	collect \overrightarrow{OY} s and substitute for \overrightarrow{OX} and \overrightarrow{OZ}			
$\overrightarrow{OY} = \begin{pmatrix} 16\\ -12 \end{pmatrix}$ e		A1	correct vector for <i>OY</i>			
OR $\overrightarrow{OY} = \frac{\overrightarrow{OX} + 3\overrightarrow{O}}{4}$		B1	correct use of intercept theorem			
$=\frac{\binom{4}{-27}+3}{4}$	$\left(\frac{20}{-7}\right)$	M1	substitute fo	or \overrightarrow{OX} and \overrightarrow{OZ} and	divide	
$= \begin{pmatrix} 16\\ -12 \end{pmatrix}^4 \epsilon$	etc.	A1	correct vect	or for <i>OY</i>		

			www.m. m
Page 6	Mark Scheme	Syllabus	Pap
	GCE O LEVEL – October/November 2012	4037	23 aths ns

	1 490 0	GCE O LEVEL – Octobe	er/Novemb	er 2012	4037	23 911,0 93	
						23 Althscloud.con	
5	$mx + 2 = mx^{2} + 7x + mx^{2} + 7x - mx + 9 = 0$ (7 - m) ² - 4 × m × 9 m ² - 50m + 49 ~ 0 (m - 1)(m - 49), m = 1 < m < 49	0 ~ 0	M1* A1 M1dep* A1 M1 A1 [6]	eliminates either y or x correct equation compares discriminant with 0 correct quadratic solves 3-term quadratic for m correct answer			
6	(a) $\sec^2 x = \frac{1}{p^2}$		B1	correct expr	tession for $\sec^2 x$ in	terms of <i>p</i>	
	$\tan^2 x = \sec^2 x - \frac{1}{2}$	r	M1 A1 [3]	substitution correct answ	in correct formula ver, oe	(ps only)	
	OR $\sin^2 x = 1 - \tan^2 x = \frac{\sin^2 x}{\cos^2 x}$	$\frac{p^2}{s^2 x} = \frac{1 - p^2}{p^2}$	B1 M1 A1		The session for $\sin^2 x$ in the session for $\sin^2 x$ in the session formula wer, or $\cos^2 x$ and $\sin^2 x$		
	OR $\sqrt{1-p^2}$ $\tan x = \frac{\sqrt{1-p^2}}{p^2}$	p	B1	'opposite' is	$5\sqrt{1-p^2}$		
	$\tan x = \frac{\sqrt{1-x}}{R}$	$\frac{p^2}{p}$	M1	$\tan x = $ their	opposite ÷ their ad	jacent	
	$\tan^2 x = \frac{1-p}{p}$	$\frac{p^2}{p^2}$	A1	correct ansv	ver, oe		
	(b) $\cot^2\theta + 2(\cot\theta \tan\theta)$		B1	correct squa	ring of bracket		
	$\cot^2 \theta = \csc^2 \theta$ completion	$-1 \text{ or } \tan^2 \theta = \sec^2 \theta - 1$ "AG"	B1 B1 [3]	use of a cor correct com	rect relevant formu pletion	la	

						mm n
	Pap The The					
	Page 7	Mark Sche GCE O LEVEL – Octobe		er 2012	Syllabus 4037	23 Athson
7	(a) $\int \left(x^{\frac{3}{2}} + 3x^{\frac{1}{2}}\right) dx$		B1 M1	-	ression in terms of i ctional power by 1	Munu Muna Manager Pap. Manager 23 Indices
	$\frac{2}{5}x^{\frac{5}{2}} + 2x^{\frac{3}{2}}(+c)$ (b)		A1 [3]	correct answ	ver, ISW	
	$\frac{k}{2x+5}$ oe		M1	integral of c	correct form, k a contract form, k a contract form, k a contract form for the form of the form	nstant
	$\frac{-10}{2x+5}$ oe		A1	correct integ	gral, ignore '+ c'	
	$\frac{k}{2 \times 10 + 5} - \frac{k}{5}$		M1	with $x = 0$	al with $x = 10$ subtra	
	1.6		A1√ [4]	correct answ	ver, ft their $k \left(= \frac{-2}{25} \right)$	$\left(\frac{1}{2}k\right)$
8	gradient $\frac{9-3}{1-(-2)} (=2)$		B1	correct grad	ient	
	(AD) $y-5=2(x-4)$) or $y = 2x - 3$	B1√	correct equa	tion for AD, ft thei	$\mathbf{r} \mathbf{m}_{AD}$
	$(CD) \ y - 9 = -\frac{1}{2}(x - \frac{1}{2})(x - \frac$	1) or $x + 2y = 19$	M1 A1	uses $m_1m_2 =$ correct equa		y = 9 in equation of line
	solves equation for <i>AD D</i> is (5, 7)	with equation for CD	M1 A1	solving equation $x = 5, y = 7$	ations for a value o	f <i>x</i> or <i>y</i>
	$\operatorname{area} = \frac{1}{2} \begin{vmatrix} 4 & -2 & 1 & 5 & 4 \\ 5 & 3 & 9 & 7 & 5 \end{vmatrix}$	$=\frac{1}{2} 26-66 $	M1	a correct me	ethod to calculate th	ne area of the trapezium
	or $=\frac{1}{2}\left(\sqrt{5}+\sqrt{45}\right)\sqrt{2}$	0				
	= 20		A1 [8]	correct answ	ver	
	OR (X on BC, $AX//DC$ gradient = $\frac{9-3}{1-(-2)}$ (=		B1	correct grad	ient	
	$\frac{\text{gradient} - \frac{1}{1 - (-2)}(-2)}{(BC) y - 9 = 2(x - 1)}$		B1	correct equa		
	$(AX) y - 5 = -\frac{1}{2}(x - $	•	M1 A1	_	x = -1 and $x = 4$ and y	v = 5 in equation of line
	solves equation BC X(0, 7)	-	M1 A1	-	ations for a value o	f x or y
	area Δ + area rect	-	M1		,1 1, 1 1 ,	
	$=\frac{1}{2}\sqrt{20}\times\sqrt{20}+\sqrt{20}$	$20 \times \sqrt{5}$		a correct me	ethod to calculate the	ne area
	= 20		A1	correct answ	ver	

						Mun My A Pap. mathson	
	Page 8	Mark Scho GCE O LEVEL – Octobe		er 2012	Syllabus 4037	Pap nath	eths .
					4001	20 1501	6,
9	(i) x^3		B1 [1]	correct ansv	ver		YO.COM
	-	3 27 64 16 -6.21 -28.32	M1 A2,1,0 [3]	0 1	y against x^3 , linear a ints plotted correct		
	(iii) $a = 9.5$ to 10.5		B1	correct answ	ver		
	gradient = $\frac{y_2 - x_2}{x_2 - x_2}$	$\underline{y_1}$	M1	finding num	nerical value for the	gradient	
	$x_2 - b = -0.6 \pm 0.01$	<i>x</i> ₁	A1 [3]	correct answer			
	(iv) $y = \frac{a}{13.69} + 3.7b$ or $13.69y = a + 50.653b$			appropriate substitutions or read graph at 50.653 and divide value by 13.69			nd
	$= -1.48 \pm 0.04$		A1 [2]	correct answ	ver		
10	(i) $x^2 + 80^2$ seen		B1				
	time = $\frac{\text{distance}}{\text{speed}}$, oe	B1 [2]				
	(ii) $\left(\frac{dT}{dx}\right) = \frac{1}{10} + \frac{x}{6\sqrt{x^2 + 6400}}$ $\frac{x}{6\sqrt{x^2 + 6400}} = \frac{1}{10} \text{ oe}$		M1* A1A1 M1dep*	A1 each con attempt to s sides		-	
	$x = 60$ $T = 30\frac{2}{3}(30.7)$		A1 A1 [6]	correct answ			

						MMM. My Masers Pap. Mainschoud.com
Г	Page 9	Mark Sche	k Scheme		Syllabus	Pap The Mark
		GCE O LEVEL – Octobe	r/Novemb	er 2012	4037	23 4ths
			T	T		
11 (a)		I				Y.COJ
		$,\frac{x-2}{2} = \log_2 100$	B1	correct expr	ression	
	or $2^{\left(\frac{x}{2}-1\right)} = 100$					
I	$x = 2 + \frac{4}{0.30}$)1	M1	valid attemp	pt to obtain value fo	or x
	=15.3		A1 [3]	correct answ	wer	
(b)		-	!			
	$\log_y 512 = 3 \text{ or}$		B1	correct relev	evant use of rule for	logarithms
	or $\log_y k = \frac{\log_y}{\log_y}$	-				
	$y^3 = 512 \text{ or } 2 =$	$\frac{y^{3}}{256}$	M1	attempt to s	solve	
	<i>y</i> = 8		A1 [3]	correct answ	wer	
(c)		I				
	$\frac{6^{5z-2}}{6^{2z}} = \frac{6^{3(z-1)}}{6^{2(3-z)}}$		M1	attempt to e or log6	express at least two	elements in terms of 6^z
		$6^{2z} = \log 6^{3(z-1)} - \log 6^{2(3-z)}$	A1	correct expression		
5	5z - 2 - 2z = 3z - 2	3 - (6 - 2z) oe	M1	uses rule of index/log fo	f indices or logarithr	ns correctly, accept
Z	z = 3.5		A1 [4]	correct answ		
12E (i)	$(2x+8)^2-9$	or $a = 2, b = 8, c = -9$	B1B1B1 [3]	B1 for each	n correct value	
(ii)	$f^{-1}(x) = \frac{\sqrt{(x+9)}}{2}$	$\frac{1}{2} - 8$ oe	M1	inverse of f	form $\frac{\sqrt{(x\pm c)}\pm b}{a}$	
(iii)	2		A2,1,0√ [3]	3, $1-2$, 0 c	correct values, ft the	ir a, b and c
	$\left(\frac{2}{x}+8\right)^2 - 9 = 1$	135 or $\frac{4}{x^2} + \frac{32}{x} + 55 = 135$	M1	apply fg (no	ot gf) or replace <i>x</i> by	$y \frac{1}{x}$
	$\frac{2}{r} + 8 = 12(or - 1)$	12) or $80x^2 - 32x - 4 = 0$	A1	correct equa	ation	
	20		M1	valid metho	od for solving their e	equation
	x = 0.5 oe, only	 	A1 [4]	correct ansv	wer	

						mm	14
[Page 10	Mark Sche	eme		Syllabus	Pap	(Martin)
		GCE O LEVEL – Octobe	er/Novemb	er 2012	4037	23	The s
120 (i) 3.5		B1 [1]	correct answ	ver		My Hans
(ii	i) $y^2 + 7 = 2x$		M1	attempt at in	nverse, involving so		
	$h^{-1}(x) = \frac{x^2 + 7}{2}$		A1 [2]	correct inve	-		
(i	ii) $\frac{3x-4}{x-2} = x, x^2 - x^2$	-5x + 4 = 0	M1	equate $k(x)$	with <i>x</i> and obtain q	uadratic equation	on
	(x-4)(x-1)		M1	solve three	term quadratic		
	x = 4 only		A1 [3]	correct answ	ver		
(i	·						
	$3\left(\frac{3x-4}{x-2}\right)-4$		M1	substitute to	o obtain expression	for k^2	
	$\frac{3\left(\frac{3x-4}{x-2}\right)-4}{\left(\frac{3x-4}{x-2}\right)-2}$		A1	correct unsi	mplified expression	1	
	$\frac{3(3x-4)-4(x+3)}{3x-4-2(x-3)}$	$\frac{-2)}{2)}$	M1	multiply nu	merator and denom	inator by $(x - 2)$?), oe
	$5-\frac{4}{x}$		A1 [4]	correct answ	ver		