

MARK SCHEME for the October/November 2012 series

4037 ADDITIONAL MATHEMATICS

4037/22

Paper 2, maximum raw mark 80

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2012 series for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level components and some Ordinary Level components.

			mm. m. m.
Page 2	Mark Scheme	Syllabus	Pap
	GCE O LEVEL – October/November 2012	4037	22 Ath

Mark Scheme Notes

Marks are of the following three types:

- M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.
- A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).
- B Accuracy mark for a correct result or statement independent of method marks.
- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol √* implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0.
 B2, 1, 0 means that the candidate can earn anything from 0 to 2.

			mm. m. m.
Page 3	Mark Scheme	Syllabus	Pap n Va
	GCE O LEVEL – October/November 2012	4037	22 913 15
The follow	ing abbreviations may be used in a mark scheme or u	sed on the scrip	ts:
AG	Answer Given on the question paper (so extra check	ing is needed to	ensure that

- AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
- BOD Benefit of Doubt (allowed when the validity of a solution may not be absolutely clear)
- CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
- ISW Ignore Subsequent Working
- MR Misread
- PA Premature Approximation (resulting in basically correct work that is insufficiently accurate)
- SOS See Other Solution (the candidate makes a better attempt at the same question)

Penalties

- MR –1 A penalty of MR –1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through $\sqrt{2}$ " marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy.
- OW –1,2 This is deducted from A or B marks when essential working is omitted.
- PA –1 This is deducted from A or B marks in the case of premature approximation.
- S –1 Occasionally used for persistent slackness – usually discussed at a meeting.
- EX –1 Applied to A or B marks when extra solutions are offered to a particular equation. Again, this is usually discussed at the meeting.

Pad	ae 4	Mark Scheme			Syllabus	Pap
	GCE O LEVEL – October/Nove			2	4037	22 Pths
7x + x = -7x + x = 0 $7x + x = 0$	5 = 3x - 4.5 o.e. 5 = 3x + 5.8 o.e. are and Ec 4 + 37x - 32 - 4)(2x + 92 - 32)(2x + 32)	13 13 13 6(=0) o.e. 0)[=0] =-4.5 5 13	M1 A1 M1 A1 [4] M1 A1 M1 A1 M1 A1 A1 A1	Equate a Equate Mark fin Both ex Three te Factoris quadrati Shape a Shape a	and attempt to nal answers pressions must erms se or formula o ic. nd intercepts n nd intercepts n	solve t have 3 terms f three term nust be correct nust be correct
$\left(\frac{\mathrm{d}A}{\mathrm{d}r}\right)$ Use 6.8	$\frac{\mathrm{d}A}{\mathrm{d}t} = \frac{\mathrm{d}A}{\mathrm{d}r} + \frac{\mathrm{d}A}{\mathrm{d}r}$	$d 0\pi$ d r d t with $r = 6$	B1,B1 M1 A1 [4]	Their –	$\frac{14}{dr}$ to 6.8	
Rear $(2x - 0.5 =$	rrange to $a - 1$)($2x - 7$ and $3.5 < x < 3.5$	$dx^{2} + bx + c [= 0]$ dy [< 0]	M1 M1 A1 A1 [4]	Factoris not \leq r	e or formula nark final state	ement.
(i) (ii)	8 (2 ³) or : -448(x^5) 1120(x^4) 2 × their 1792(x^5)	56 1120 and their –448 used	B1 B1 [2] B1 M1 A1 [3]	Mark fi	nal answer	
(i) (ii)	Evidence 360 Evidence 72	of 6, 5, 4, and 3 only of 2×3 for outside digits of 4×3 for inside digits	M1 A1 [2] B1 B1 B1 B1 [3]	Number ${}^{4}P_{2}$ used	rs listed but not	t added.
(i) (ii)	Express a Correctly Express a y = 3x - 4 Attempt t $x = \frac{14}{2}$ and	as powers of 2 reaches $3x + 2y = 6$ as powers of 5 to e. o solve simultaneous equations $dy = \frac{2}{2}$	M1 A1 AG [2] M1 A1 M1 A1	At least Both co Three te Equation Accept	one : 2^{6y-9} or rrect 5^2 and 5^3 erms ns must be line decimals that r	2^{4x-4y} o.e. x^{-6} o.e. ear ound to correct 3sf

Pa	ige 5	Mark Scheme		Syllabus Pap yna
		GCE O LEVEL – October/Nove	mber 201	12 4037 22 ¹ / ₃
(i)	$sec^2 4x$ × 4		M1 A1	One term only
(ii)	$x + t_{x} + t_{x}$		[2] B1 M1	No additional terms
	$\div 4$		A1 [3]	isw
(iii)	Correct u	use of limits	M1	Expression must have 2 integrated terms in <i>x</i> from (ii) .
	$k = \frac{1}{8}$		A1 [2]	Rounds to 0.125. Accept $\frac{\pi}{8}$ or 0.125π
(i)	$(b=)\frac{7-}{8-}$	$\frac{4}{2} = \left[\frac{1}{2}\right]$	B1 M1	Finding gradient Finding y intercept
	$(\lg a)=3$ $\lg y = \lg a$ or $\lg y = 3$	$+ b \lg x \text{ or } \lg y - 4 = b(\lg x - 2)$ $3 + 0.5 \lg x$	M1	$\lg y = c + m \lg x$ is sufficient
	a = 1000	or 10^3	A1	
(ii)	y = 1000. m = 1	$x = 011000\sqrt{x}$	[5] B1	
(iii)	<i>c</i> = 6		[1] B1	
			[1]	
(i)	420	80 (40 OR (40) (40) (42) (42) (42) (42) (42)	B1	Correct triangle
	$\frac{\sin \alpha}{80} =$	$\frac{\sin 40}{420}$	M1	Use of sine or cosine rule in any triangle with some of $80,420$, their <i>v</i> and an angle
	$\alpha = 7.03$ Bearing	3 or 7 (223 (230 – α)	A1 A1√ [*] [4]	
(ii)	$\frac{v}{\sin their}$	$\frac{420}{\sin 40}$	M1	Use of sine or cosine rule in any triangle with 80 or 420 or both.
	v = 478	1000	A1	
	Use tim	$e \frac{1000}{v}$	M1	v calculated from a triangle
	2.09 ho	urs or 2 hours 5minutes	A1 [4]	Units required

Pa	ae 6	Mark Scheme		Syllabus	Pap
	.900	GCE O LEVEL – October/Nov	ember 201	2 4037	22 Paths
10 (i)	Integrate v = 4t - 0 Use $t = 0$ v = 4t - 0	e to find v $t^{2}(+c)$ 0, v = 12 to find c =12 $t^{2} + 12$	M1 A1 B1 M1	Increase of powers Solve three term qu	seen at least once uadratic
(ii)	t = 6 Integrate $s = 2t^{2} - s = 72$	e to find s $\frac{t^3}{3} + 12t$	$ \begin{array}{c} \text{A1} \\ \text{[5]} \\ \text{M1} \\ \text{A1} \\ \text{A1} \\ \text{[3]} \end{array} $	Do not penalize <i>t</i> = Increase of powers 3 terms cao	= −2.
11 (a)	$\tan x = -$ 114 294	-2.25	B1 B1 B1√ [™]	Rounds to 114.0 is Their 114 + 180 fro	w om tan function isw
(b)	Uses co	$\sec y = \frac{1}{\sin y}$	B1	Seen anywhere	
	Forms q [= 0] ($4\sin y -$ 14.5 and 165.5 an	uadratic in sin y : $12\sin^2 y + \sin y - 1$ -1) $(2\sin y + 1)[= 0]$ -199.5 -1 340.5	M1 M1 A1 A1	Must be 3 terms Factorise or formul Any 2 values isw The other 2 values	la of 3 term quadratic. isw
(c)	$\cos\left(\frac{z}{3}\right)$	$=\frac{3}{5}$	[5] B1		
	$\frac{z}{3} = 0.92$ $z = 2.78$ $z = 16.1$	7 to 2.79 inc	M1 A1 A1 [4]	Solves their equations isw Rounds to isw	on in radians
12 EITH	HER			_ <u>x</u>	
(i)	$y A e^{-\frac{1}{4}x} (A = -4$ Substitute	+ c) (0, 10)	M1 A1 DM1	Integrate : e ⁴ see	n
	y=14-4 14-4e	$e^{-\frac{1}{4}x}$	A1 A1 [5]		
(ii)	Tangent a Gradient	at A is $y - 10 = x$ tangent at B is e	B1 B1		
	Tangent a Solve equ	at <i>B</i> is $y + 4e - 14 = ex + 4e$ exations of tangents	B1√ [≜] M1	With their gradient Two linear equatio	t and answer to (i) ns
	$x = \frac{4}{1 - e}$	o.e.	A1 [5]		

						mm. D	12
Pa	ge 7	Mark Scheme			Syllabus	Pap	Mary
		GCE O LEVEL – October/No	ovember 2012 4037			22	ath is
12 OR (i)	$\frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{1}{3}$	$e^{-\frac{1}{3}x}$	M1	Ae	$\frac{x}{3}$ only one term		- Cloud.col.
	at $(0, 9)$ Grad non Point Q	$\frac{dy}{dx} = -\frac{1}{3}$ mal = 3 is (-3, 0)	A1 M1 A1 [4]	Use Con	of $m_1 m_2 = -1$ done $x = -3$		
(ii)	Area rec	tangle 24 + 3e (32.1)	M1	The	ir $3 \times \text{their}(8 + e)$		
	$\int_{-3}^{0} 8 + e^{-\frac{1}{2}}$	$\frac{x^3}{3}$ dx	M1	Inte	grate: $8x$ and $e^{-\frac{x}{3}}$ so	een	
	$=\left[8x-3\right]$	$e^{-\frac{x}{3}} \bigg]_{-3}^{0}$	A1				
	21+3e (2 Shaded a	9.1) area =3	M1 A1 A1 [6]	Cor	rect use of limits th	neir –3 and 0	